Bioremediation potential of glyphosate-degrading microorganisms in eutrophicated Ecuadorian water bodies.
Ontology highlight
ABSTRACT: Phosphonate compounds are the basis of many xenobiotic pollutants, such as Glyphosate (N-(phosphonomethyl-glycine). Only procaryotic microorganisms and the lower eukaryotes are capable of phosphonate biodegradation through C-P lyase pathways. Thus, the aim of this study was to determine the presence of C-P lyase genes in Ecuadorian freshwater systems as a first step towards assessing the presence of putative glyphosate degraders. To that end, two Nested PCR assays were designed to target the gene that codifies for the subunit J (phnJ), which breaks the C-P bond that is critical for glyphosate mineralization. The assays designed in this study led to the detection of phnJ genes in 7 out of 8 tested water bodies. The amplified fragments presented 85-100% sequence similarity with phnJ genes that belong to glyphosate-degrading microorganisms. Nine sequences were not reported previously in the GenBank. The presence of phosphonate degraders was confirmed by isolating three strains able to grow using glyphosate as a unique carbon source. According to the 16S sequence, these strains belong to the Pantoea, Pseudomonas, and Klebsiella genera. Performing a Nested PCR amplification of phnJ genes isolated from eutrophicated water bodies, prior to isolation, may be a cost-effective strategy for the bioprospection of new species and/or genes that might have new properties for biotech industries, laying the groundwork for additional research.
SUBMITTER: Hernandez-Alomia F  
PROVIDER: S-EPMC8913404 | biostudies-literature | 2022 Mar 
REPOSITORIES:  biostudies-literature
ACCESS DATA