Project description:Type 2 diabetes mellitus (T2DM) is closely associated with cardiovascular diseases (CVD), including atherosclerosis, hypertension and heart failure. Some anti-diabetic medications are linked with an increased risk of weight gain or hypoglycemia which may reduce the efficacy of the intended anti-hyperglycemic effects of these therapies. The recently developed receptor agonists for glucagon-like peptide-1 (GLP-1RAs), stimulate insulin secretion and reduce glycated hemoglobin levels without having side effects such as weight gain and hypoglycemia. In addition, GLP1-RAs demonstrate numerous cardiovascular protective effects in subjects with or without diabetes. There have been several cardiovascular outcomes trials (CVOTs) involving GLP-1RAs, which have supported the overall cardiovascular benefits of these drugs. GLP1-RAs lower plasma lipid levels and lower blood pressure (BP), both of which contribute to a reduction of atherosclerosis and reduced CVD. GLP-1R is expressed in multiple cardiovascular cell types such as monocyte/macrophages, smooth muscle cells, endothelial cells, and cardiomyocytes. Recent studies have indicated that the protective properties against endothelial dysfunction, anti-inflammatory effects on macrophages and the anti-proliferative action on smooth muscle cells may contribute to atheroprotection through GLP-1R signaling. In the present review, we describe the cardiovascular effects and underlying molecular mechanisms of action of GLP-1RAs in CVOTs, animal models and cultured cells, and address how these findings have transformed our understanding of the pharmacotherapy of T2DM and the prevention of CVD.
Project description:Glucagon-like peptide-1 receptor (GLP-1R) agonists have been shown to regulate blood glucose concentrations by mechanisms including enhanced insulin synthesis/secretion, suppressed glucagon secretion, slowed gastric emptying, and enhanced satiety. GLP-1 receptors have also been identified in the heart, kidneys, and blood vessels, leading to the hypothesis that GLP-1R agonists may affect cardiovascular function or cardiovascular disease (CVD). The aim of this literature review was to assemble and assess preclinical and clinical data of potential medical importance regarding the cardiovascular effects of GLP-1R agonists. Preclinical studies with the GLP-1R agonists GLP-1, exenatide, or liraglutide provided evidence that GLP-1R stimulation favorably affects endothelial function, sodium excretion, recovery from ischemic injury, and myocardial function in animals. Similar observations have been made in exploratory studies on GLP-1 infusion in normal subjects and patients with type 2 diabetes. Post hoc analyses of phase III studies of patients with type 2 diabetes treated with exenatide(bid or qw) or liraglutide(qd) showed that these GLP-1R agonists reduced blood pressure, an effect largely independent of weight loss, and that liraglutide slightly increased heart rate. Preliminary data also indicated that GLP-1R agonists reduced markers of CVD risk such as C-reactive protein and plasminogen activator inhibitor-1. Ongoing studies are examining the effects of administering GLP-1R agonists to patients at risk of CVD, postangioplasty patients, post-CABG patients, and patients with heart failure. Additional studies should provide meaningful data to determine whether GLP-1R agonists provide unique treatment benefits to patients at risk for or with established CVD.
Project description:BackgroundGlucagon-like peptide-1 receptor agonists (GLP-1 RAs) have shown cardiovascular benefits in cardiovascular outcome trials in type 2 diabetes mellitus. However, the most convincing evidence was obtained in subjects with established cardiovascular (CV) disease. We analyzed the determinants of GLP-1 RA-mediated CV protection in a real-world population of persons with type 2 diabetes with and without a history of CV events with long-term follow-up.MethodsRetrospective cohort study of 550 individuals with type 2 diabetes (395 in primary CV prevention, 155 in secondary CV prevention), followed at a single center after the first prescription of a GLP-1 RA between 2009 and 2019. CV and metabolic outcomes were assessed.ResultsMedian duration of follow-up was 5.0 years (0.25-10.8) in primary prevention and 3.6 years (0-10.3) in secondary prevention, with a median duration of treatment of 3.2 years (0-10.8) and 2.5 years (0-10.3) respectively. In the multivariable Cox regression model considering GLP-1 RA treatment as a time-dependent covariate, in the primary prevention group, changes in BMI and glycated hemoglobin did not have an impact on MACE risk, while age at the time of GLP-1 initiation (HR 1.08, 95% CI 1.03-1.14, p = 0.001) and GLP-1 RA cessation by time (HR 3.40, 95% CI 1.82-6.32, p < 0.001) increased the risk of MACE. Regarding the secondary prevention group, only GLP-1 RA cessation by time (HR 2.71, 95% CI 1.46-5.01, p = 0.002) increased the risk of MACE. With respect to those who withdrew treatment, subjects who continued the GLP-1 RA had significantly greater weight loss and lower glycated hemoglobin levels during follow-up.ConclusionsIn this real-world type 2 diabetes population, discontinuation of GLP-1 RA treatment was associated to a higher risk of major cardiovascular events, in both subjects with and without a history of CV events.
Project description:Patients with type 2 diabetes have a several-fold increased risk of developing cardiovascular disease when compared with nondiabetic controls. Myocardial infarction and stroke are responsible for 75% of all death in patients with diabetes, who present a 2-4× increased incidence of death from coronary artery disease. Patients with diabetes are considered for cardiovascular disease secondary prevention because their risk level is similar to that reported in patients without diabetes who have already suffered a myocardial infarction. More recently, with a better risk factors control, mainly in intensive LDL cholesterol targets with statins, a significant decrease in acute cardiovascular events was observed in population with diabetes. Together with other major risk factors, type 2 diabetes must be considered as an important cause of cardiovascular disease.Glucagon like peptide-1 receptor agonists represent a novel class of anti-hyperglycemic agents that have a cardiac-friendly profile, preserve neuronal cells and inhibit neuronal degeneration, an anti-inflammatory effect in liver protecting it against steatosis, increase insulin sensitivity, promote weight loss, and increase satiety or anorexia.This review is intended to rationally compile the multifactorial cardiovascular effects of glucagon-like peptide-1 receptor agonists available for the treatment of patients with type 2 diabetes.
Project description:Along the obesity pandemic, the prevalence of non-alcoholic fatty liver disease (NAFLD), often regarded as the hepatic manifestation of the metabolic syndrome, increases worldwide representing now the prevalent liver disease in western countries. No pharmacotherapy is approved for the treatment of NAFLD and, currently, the cornerstone treatment is lifestyle modifications focusing on bodyweight loss, notoriously difficult to obtain and even more difficult to maintain. Thus, novel therapeutic approaches are highly demanded. Glucagon-like peptide-1 (GLP-1) receptor agonists (GLP-1RAs) are approved for the treatment of type 2 diabetes and obesity. They exert their body weight-lowering effect by reducing satiety and food intake. GLP-1RAs have also been shown to reduce liver inflammation and fibrosis. Furthermore, glucagon receptor agonism is being investigated for the treatment of NAFLD due to its appetite and food intake-reducing effects, as well as its ability to increase lipid oxidation and thermogenesis. Recent studies suggest that glucagon receptor signaling is disrupted in NAFLD, indicating that supra-physiological glucagon receptor agonism might represent a new NAFLD treatment target. The present review provides (1) an overview in the pathophysiology of NAFLD, including the potential involvement of GLP-1 and glucagon, (2) an introduction to the currently available GLP-1RAs and (3) outlines the potential of emerging GLP-1RAs and GLP-1/glucagon receptor co-agonists in the treatment of NAFLD.
Project description:ImportanceGlucagon-like peptide 1 (GLP-1) receptor agonists were first approved for the treatment of type 2 diabetes in 2005. Demand for these drugs has increased rapidly in recent years, as indications have expanded, but they remain expensive.ObjectiveTo analyze how manufacturers of brand-name GLP-1 receptor agonists have used the patent and regulatory systems to extend periods of market exclusivity.Evidence reviewThe annual US Food and Drug Administration's (FDA) Approved Drug Products With Therapeutic Equivalence Evaluations was used to identify GLP-1 receptor agonists approved from 2005 to 2021 and to record patents and nonpatent statutory exclusivities listed for each product. Google Patents was used to extract additional data on patents, including whether each was obtained on the delivery device or another aspect of the product. The primary outcome was the duration of expected protection from generic competition, defined as the time elapsed from FDA approval until expiration of the last-to-expire patent or regulatory exclusivity.FindingsOn the 10 GLP-1 receptor agonists included in the cohort, drug manufacturers listed with the FDA a median of 19.5 patents (IQR, 9.0-25.8) per product, including a median of 17 patents (IQR, 8.3-22.8) filed before FDA approval and 1.5 (IQR, 0-2.8) filed after FDA approval. Fifty-four percent of all patents listed on GLP-1 receptor agonists were on the delivery devices rather than active ingredients. Manufacturers augmented patent protection with a median of 2 regulatory exclusivities (IQR, 0-3) obtained at approval and 1 (IQR, 0.3-4.3) added after approval. The median total duration of expected protection after FDA approval, when accounting for both preapproval and postapproval patents and regulatory exclusivities, was 18.3 years (IQR, 16.0-19.4). No generic firm has successfully challenged patents on GLP-1 receptor agonists to gain FDA approval.Conclusions and relevancePatent and regulatory reform is needed to ensure timely generic entry of GLP-1 receptor agonists to the market.
Project description:Glucagon-like peptide 1 receptor agonists (GLP-1 RAs) are emerging as an important therapy to consider for patients with type 2 diabetes (T2D) given this class of treatment's ability to reduce glycated haemoglobin and their associated weight loss and low risk for hypoglycaemia. Additionally, seven cardiovascular outcomes trials (CVOTs) have been performed in the past 4?years using lixisenatide, liraglutide, semaglutide, exenatide, albiglutide, dulaglutide and oral semaglutide. All have found non-inferiority for cardiovascular outcomes, with many finding superiority of these drugs. These findings have transformed our guidelines on pharmacological treatment of T2D. This review article will discuss GLP-1 RA therapy, review the seven CVOTs reported to date and discuss the implications on current guidelines and therapies going forward.