Project description:The decision algorithm for treatment of advanced myelodysplastic syndrome (MDS) (intermediate- to very high-risk by the revised International Prognostic Scoring System [IPSS-R]) is complex. Often, the appropriate choice is unknown and not currently addressed by available clinical evidence. Although allogeneic hematopoietic cell transplantation (alloHCT) is curative for some patients with MDS, there is a concurrent high risk of mortality and morbidity. Alternatively, although hypomethylating agents (HMAs) have low toxicity, they are not thought to be curative, with a median increase in overall survival of only 9 months. Initial attempts to improve outcomes with HMAs through addition of novel agents failed, but there is hope that newer combination strategies will improve outcomes. Challenging clinical questions include who should be considered for alloHCT, appropriate timing and preparation for alloHCT, and appropriate therapeutic choices for patients who are not candidates for alloHCT. Given the interplay between alloHCT and non-alloHCT approaches, a unified coordinated approach is optimal for patients with advanced MDS. When possible, patients with advanced MDS should be encouraged to enroll into clinical trials that include alloHCT and non-alloHCT approaches.
Project description:Aberrant DNA methylation often silences transcription of tumor-suppressor genes and is considered a hallmark of myeloid neoplasms. Similarly, histone deacetylation represses transcription of genes responsible for cell differentiation/death. A previous clinical study suggested potential pharmacodynamic antagonism between histone deacetylase inhibitors (HDACi) and DNA hypomethylating agents (HMA). Herein, to determine such antagonism, we used MDS/AML lines and NHD13 transgenic mice, and demonstrated that treatment with the pan-HDACi suberoylanilide hydroxamic acid (SAHA) significantly decreased TET2 expression and global 5-hydroxymethylcytosine (5hmC) levels. Mechanistically, our RNAi screen revealed that HDAC4 was responsible for maintaining TET2 levels. Accordingly, HDAC4 knockout reduced expression levels of MTSS1, a known TET2 target, an event associated with decreased 5hmC enrichment on the MTSS1 enhancer. Retrospective analysis of GEO datasets demonstrated that lower HDAC4 levels predict worse prognosis for AML patients. In an MDS-L xenografted immunodeficient mouse model, vitamin C co-treatment prevented TET2 loss of activity seen following SAHA treatment. Accordingly, vitamin C co-treatment further reduced MDS-L cell engraftment relative to SAHA alone. In summary, our findings suggest that co-administration of a TET2 agonist with pan-HDACi treatment could effectively counter potential diminution in TET2 activity resulting from pan-HDACi treatment alone, providing a rationale for evaluating such combinations against high-risk MDS/AML.
Project description:BackgroundIn spite of the recent discovery of genetic mutations in most myelodysplasic (MDS) patients, the pathophysiology of these disorders still remains poorly understood, and only few in vivo models are available to help unravel the disease.MethodsWe performed global specific gene expression profiling and functional pathway analysis in purified Sca1+ cells of two MDS transgenic mouse models that mimic human high-risk MDS (HR-MDS) and acute myeloid leukemia (AML) post MDS, with NRASD12 and BCL2 transgenes under the control of different promoters MRP8NRASD12/tethBCL-2 or MRP8[NRASD12/hBCL-2], respectively.ResultsAnalysis of dysregulated genes that were unique to the diseased HR-MDS and AML post MDS mice and not their founder mice pointed first to pathways that had previously been reported in MDS patients, including DNA replication/damage/repair, cell cycle, apoptosis, immune responses, and canonical Wnt pathways, further validating these models at the gene expression level. Interestingly, pathways not previously reported in MDS were discovered. These included dysregulated genes of noncanonical Wnt pathways and energy and lipid metabolisms. These dysregulated genes were not only confirmed in a different independent set of BM and spleen Sca1+ cells from the MDS mice but also in MDS CD34+ BM patient samples.ConclusionsThese two MDS models may thus provide useful preclinical models to target pathways previously identified in MDS patients and to unravel novel pathways highlighted by this study.
Project description:There is an urgent need to identify effective strategies to prevent leukemic transformation and induce sustained deep remissions in adult high-risk myelodysplastic syndrome (MDS) patients. This article discusses the clinical impact potential of bispecific antibodies (BiAB) capable of redirecting host T-cell cytotoxicity in an MHC-independent manner to malignant clones as well as immunosuppressive myeloid-derived suppressor cells (MDSC) as a new class of anti-MDS drug candidates. T-cell engaging BiAB targeting the CD123 antigen may help delay disease progression in high-risk adult MDS and potentially reduce the risk of transformation to secondary AML.
Project description:Lower-risk myelodysplastic syndromes (MDS) are characterized by the presence of dysplasia, low bone marrow blast percentage, low number and depth of cytopenia(s), and relatively good-risk karyotpic and molecular abnormalities. A score of ≤3.5 on the Revised International Prognostic Scoring System classifies patients as lower-risk MDS. Information from a mutational profile of the MDS at time of diagnosis (and over serial time points) can be reassuring for predicted behavior of lower-risk MDS compared with one expected to progress more rapidly (higher-risk MDS). Supportive care continues to be the crux of treatment, although the options to reduce transfusion needs have improved in 2020. Erythropoiesis stimulating agents, lenalidomide, and luspatercept address the most frequent (and symptomatic) cytopenia (anemia) and are started only when patients are transfusion dependent. Patients can derive long-term benefits (years) from these approaches but will often progress to higher-risk MDS. Interestingly, some patients with lower-risk MDS can present with an isolated thrombocytopenia for which thrombopoietin receptor analogs such as romiplostim and eltrombopag are options (as long as blast counts are low). The presence of pancytopenia and or intensifying and unremitting clinical symptoms are often treated with hypomethylating agents or (anti-thymocyte globulin if hypocellular MDS is of concern). Targeted therapies are emerging for small subsets of MDS patients with specific somatic mutations (ie, TP53, IDH1/2, FLT3), although currently, there are no approved, mutation-directed medications to treat MDS.
Project description:The diagnosis of myelodysplastic syndromes (MDS) remains problematic due to the subjective nature of morphological assessment. The reported high frequency of somatic mutations and increased structural variants by array-based cytogenetics have provided potential objective markers of disease however this has been complicated by reports of similar abnormalities in the healthy population. We aimed to identify distinguishing features between those with early MDS and reported healthy individuals by characterising 69 patients who, following a non-diagnostic marrow, developed progressive dysplasia or acute myeloid leukaemia (AML). Targeted sequencing and array based cytogenetics identified a driver mutation and/or structural variant in 91% (63/69) of pre-diagnostic samples with the mutational spectrum mirroring that in the MDS population. When compared with the reported healthy population the mutations detected had significantly greater median variant allele fraction (40% vs 9-10%) and occurred more commonly with additional mutations (≥2 mutations 64% vs. 8%). Furthermore mutational analysis identified a high-risk group of patients with shorter time to disease progression and poorer overall survival. The mutational features in our cohort are distinct from those seen in the healthy population and, even in the absence of definitive disease, can predict outcome. Early detection may allow consideration of intervention in poor risk patients. We performed array based cytogenetics using HumanCytoSNP-12 (Illumina) on 69 patients diagnosed with acute myeloid leukaemia or myelodysplastic syndrome who had a previously non-diagnostic sample. SNP array analysis was performed on all diagnostic samples. In those with a documented abnormality, SNP-A was performed on the corresponding pre-diagnostic sample (n=32).
Project description:Myelodysplastic syndromes (MDS) represent one of the most frequent and serious haematologic diseases of the elderly. Effective therapies exist ranging from best supportive care to haematologic stem cell transplantation (HSCT). Decision making, however, is rather complex in this group of patients because ageing is a multidimensional process involving not only physiological changes but also changes in functional, social, emotional and cognitive capacities. All these factors can have a significant impact on the efficacy and tolerability of a potential therapy and therefore have to be thoroughly assessed before deciding on individual treatment regimens. Risk assessment tools are available both to classify the stage and prognosis of MDS and to meet the needs of elderly patients. A tool explicitly focussing on elderly MDS patients, however, is still missing. The current report approached this issue by combining the well established MDS-risk score 'International Prognostic Scoring System' (IPSS) with the 'Multidimensional Geriatric Assessment' (MGA). As decision making is most complex in high-risk MDS patients, the new algorithm is presented exemplarily for this group of patients. In a first step, MDS-related risk is identified using IPSS, in a second step, patients are assigned to one of three risk categories of the MGA (go-go/fit, slow-go/vulnerable, no-go/frail). While go-go patients might be subjected to therapies comparable to those given to younger patients, in no-go patients, a palliative therapy combined with best supportive care will probably be most appropriate. In slow-go patients, age-related life expectancy taken from public age statistics should be compared to the MDS-related life expectancy. Based on this combined assessment procedure and also on treatment tolerance in terms of the expectations/wishes of the patient and his/her family, an individualised therapeutic approach should be developed. Specific treatment recommendations for these three groups of patients are given, including HSCT, azanucleosides and best supportive care. To illustrate its practicability, i.e. the implementation of the novel algorithm in clinical practice, the case of an elderly high-risk MDS patient is presented and discussed in detail. This new algorithm will facilitate the identification of the very particular needs and conditions of elderly MDS patients in clinical practice. Based on this, individually tailored therapeutic approaches can be developed--the prerequisite for the best possible clinical outcome.
Project description:Although recent observations implicate the importance of telomerase activity in acute myeloid leukaemia (AML), the roles of epigenetic regulations of the TERT gene in leukaemogenesis, drug resistance and clinical prognosis in AML are not fully understood. We developed a quantitative pyrosequencing-based methylation assay covering the TERT proximal promoter and a partial exon 1 (TERTpro/Ex1) region and tested both cell lines and primary leukaemia cells derived from AML and AML with preceding myelodysplastic syndrome (AML/MDS) patients (n = 43). Prognostic impact of methylation status of the upstream TERT promoter region was assessed by the Kaplan-Meier method. The activity of the telomerase inhibitor, imetelstat, was measured using leukaemia cell lines. The TERTpro/Ex1 region was highly methylated in all cell lines and primary leukaemia cells showed diverse methylation profiles. Most cases showed hypermethylated regions at the upstream TERTpro/Ex1 region, which were associated with inferior patient survival. TERTpro/Ex1 methylation status was correlated with the cytotoxicity to imetelstat and its combination with hypomethylating agent enhanced the cytotoxicity of imetelstat. AML cell lines and primary blasts harbour distinct TERTpro/Ex1 methylation profiles that could serve as a prognostic biomarker of AML. However, validation in a large cohort of patients is necessary to confirm our findings.
Project description:The myelodysplastic syndromes (MDS) are a heterogeneous group of malignant hematopoietic stem cell disorders characterized by ineffective growth and differentiation of hematopoietic progenitors leading to peripheral blood cytopenias, dysplasia, and a variable risk of transformation to acute myelogenous leukemia. As most patients present with lower-risk disease, understanding the pathogenesis of ineffective hematopoiesis is important for developing therapies that will increase blood counts in patients with MDS. Various inflammatory cytokines are elevated in MDS and contribute to dysplastic differentiation. Inflammatory pathways mediated by interleukin (IL) 1b, IL-6, IL-1RAP, IL-8, and others lead to growth of aberrant MDS stem and progenitors while inhibiting healthy hematopoiesis. Spliceosome mutations can lead to missplicing of genes such as IRAK4, CASP8, and MAP3K, which lead to activation of proinflammatory nuclear factor κB-driven pathways. Therapeutically, targeting of ligands of the transforming growth factor β (TGF-β) pathway has led to approval of luspatercept in transfusion-dependent patients with MDS. Presently, various clinical trials are evaluating inhibitors of cytokines and their receptors in low-risk MDS. Taken together, an inflammatory microenvironment can support the pathogenesis of clonal hematopoiesis and low-risk MDS, and clinical trials are evaluating anti-inflammatory strategies in these diseases.
Project description:The diagnosis of myelodysplastic syndromes (MDS) remains problematic due to the subjective nature of morphological assessment. The reported high frequency of somatic mutations and increased structural variants by array-based cytogenetics have provided potential objective markers of disease however this has been complicated by reports of similar abnormalities in the healthy population. We aimed to identify distinguishing features between those with early MDS and reported healthy individuals by characterising 69 patients who, following a non-diagnostic marrow, developed progressive dysplasia or acute myeloid leukaemia (AML). Targeted sequencing and array based cytogenetics identified a driver mutation and/or structural variant in 91% (63/69) of pre-diagnostic samples with the mutational spectrum mirroring that in the MDS population. When compared with the reported healthy population the mutations detected had significantly greater median variant allele fraction (40% vs 9-10%) and occurred more commonly with additional mutations (≥2 mutations 64% vs. 8%). Furthermore mutational analysis identified a high-risk group of patients with shorter time to disease progression and poorer overall survival. The mutational features in our cohort are distinct from those seen in the healthy population and, even in the absence of definitive disease, can predict outcome. Early detection may allow consideration of intervention in poor risk patients.