Unknown

Dataset Information

0

Complementary roles of serotonergic and cholinergic systems in decisions about when to act.


ABSTRACT: Decision-making not only involves deciding about which action to choose but when and whether to initiate an action in the first place. Macaque monkeys tracked number of dots on a screen and could choose when to make a response. The longer the animals waited before responding, the more dots appeared on the screen and the higher the probability of reward. Monkeys waited longer before making a response when a trial's value was less than the environment's average value. Recordings of brain activity with fMRI revealed that activity in dorsal raphe nucleus (DRN)-a key source of serotonin (5-HT)-tracked average value of the environment. By contrast, activity in the basal forebrain (BF)-an important source of acetylcholine (ACh)-was related to decision time to act as a function of immediate and recent past context. Interactions between DRN and BF and the anterior cingulate cortex (ACC), another region with action initiation-related activity, occurred as a function of the decision time to act. Next, we performed two psychopharmacological studies. Manipulating systemic 5-HT by citalopram prolonged the time macaques waited to respond for a given opportunity. This effect was more evident during blocks with long inter-trial intervals (ITIs) where good opportunities were sparse. Manipulating systemic acetylcholine (ACh) by rivastigmine reduced the time macaques waited to respond given the immediate and recent past context, a pattern opposite to the effect observed with 5-HT. These findings suggest complementary roles for serotonin/DRN and acetylcholine/BF in decisions about when to initiate an action.

SUBMITTER: Khalighinejad N 

PROVIDER: S-EPMC8926843 | biostudies-literature | 2022 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Complementary roles of serotonergic and cholinergic systems in decisions about when to act.

Khalighinejad Nima N   Manohar Sanjay S   Husain Masud M   Rushworth Matthew F S MFS  

Current biology : CB 20220211 5


Decision-making not only involves deciding about which action to choose but when and whether to initiate an action in the first place. Macaque monkeys tracked number of dots on a screen and could choose when to make a response. The longer the animals waited before responding, the more dots appeared on the screen and the higher the probability of reward. Monkeys waited longer before making a response when a trial's value was less than the environment's average value. Recordings of brain activity  ...[more]

Similar Datasets

| S-EPMC4679867 | biostudies-literature
| S-EPMC3879818 | biostudies-literature
| S-EPMC5951923 | biostudies-literature
| S-EPMC8904722 | biostudies-literature
| S-EPMC5215384 | biostudies-literature
| S-EPMC6633915 | biostudies-literature
| S-EPMC6681680 | biostudies-literature
| S-EPMC5319835 | biostudies-literature
| S-EPMC9376875 | biostudies-literature
| S-EPMC3626325 | biostudies-literature