Project description:We report on the first Polish patient diagnosed with the Aicardi-Goutières syndrome 5 (AGS5). AGS is caused by mutations in one of 9 genes (TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR, IFIH, LSM11, RNU7-1) which stimulate the type I interferon response. The diagnosis was confirmed by identifying a compound heterozygous mutation p.(Phe165Ser)/p.(Gln235*) in the SAMHD1 gene using whole-exome sequencing. The cystic lesions in the temporal lobes are an uncommon finding in the presented patient carrying a SAMHD1 mutation. Reporting new cases expands the range of phenotypes and plays the crucial role in understanding the AGS pathogenesis and creates new therapy approaches.
Project description:Long interspersed elements 1 (LINE-1) occupy at least 17% of the human genome and are its only active autonomous retrotransposons. However, the host factors that regulate LINE-1 retrotransposition are not fully understood. Here, we demonstrate that the Aicardi-Goutières syndrome gene product SAMHD1, recently revealed to be an inhibitor of HIV/simian immunodeficiency virus (SIV) infectivity and neutralized by the viral Vpx protein, is also a potent regulator of LINE-1 and LINE-1-mediated Alu/SVA retrotransposition. We also found that mutant SAMHD1s of Aicardi-Goutières syndrome patients are defective in LINE-1 inhibition. Several domains of SAMHD1 are critical for LINE-1 regulation. SAMHD1 inhibits LINE-1 retrotransposition in dividing cells. An enzymatic active site mutant SAMHD1 maintained substantial anti-LINE-1 activity. SAMHD1 inhibits ORF2p-mediated LINE-1 reverse transcription in isolated LINE-1 ribonucleoproteins by reducing ORF2p level. Thus, SAMHD1 may be a cellular regulator of LINE-1 activity that is conserved in mammals.
Project description:Aicardi-Goutières syndrome is a mendelian mimic of congenital infection and also shows overlap with systemic lupus erythematosus at both a clinical and biochemical level. The recent identification of mutations in TREX1 and genes encoding the RNASEH2 complex and studies of the function of TREX1 in DNA metabolism have defined a previously unknown mechanism for the initiation of autoimmunity by interferon-stimulatory nucleic acid. Here we describe mutations in SAMHD1 as the cause of AGS at the AGS5 locus and present data to show that SAMHD1 may act as a negative regulator of the cell-intrinsic antiviral response.
Project description:Mutations in sterile alpha motif domain and histidine-aspartate domain-containing protein 1 (SAMHD1) are found in a neurodevelopmental disorder, Aicardi-Goutières syndrome, and cancers, and SAMHD1, which is a deoxynucleoside triphosphate (dNTP) triphosphorylase, was identified as a myeloid-specific HIV-1 restriction factor. Here, we characterized the enzymology and structure of an SAMHD1 ortholog of Caenorhabditis elegans, ZK177.8, which also reportedly induces developmental defects upon gene knockdown. We found ZK177.8 protein is a dNTPase allosterically regulated by dGTP. The active site of ZK177.8 recognizes both 2' OH and triphosphate moieties of dNTPs but not base moiety. The dGTP activator induces the formation of the enzymatically active ZK177.8 tetramers, and ZK177.8 protein lowers cellular dNTP levels in a human monocytic cell line. Finally, ZK177.8 tetramers display very similar X-ray crystal structure with human and mouse SAMHD1s except that its lack of the canonical sterile alpha motif domain. This striking conservation in structure, function, and allosteric regulatory mechanism for the hydrolysis of the DNA building blocks supports their host developmental roles.
Project description:TREX1 (three prime repair exonuclease 1) gene encodes DNA 3' end repair exonuclease that plays an important role in DNA repair. Mutations in TREX1 gene have been identified as the cause of a rare autoimmune neurological disease, Aicardi-Goutières syndrome (AGS). Here, we report an AGS case of a 6-month-old Chinese girl with novel TREX1 variants. The patient had mild rashes on the face and legs, increased muscle tensions in the limbs, and positive cervical correction reflex. Cranial magnetic resonance imaging showed that there were patches of slightly longer T1 and T2 signals in the bilateral cerebral hemisphere and brainstem white matter, mainly in the frontotemporal lobe, together with decreased white matter volume, enlarged ventricles, and widened sulcus fissure. Total exon sequencing showed that the TREX1 gene of the child had mutations of c.137_138insC and c.292_293insA, which had not been reported before. In addition, elevated type I interferons were detected by using enzyme-linked immunosorbent assay in the patient's serum. Together, our study demonstrated that novel TREX1 variants (c.137_138insC and c.292_293insA) cause AGS for the first time.
Project description:Aicardi-Goutières syndrome (AGS) is a rare genetic disorder characterised by progressive encephalopathy, involving microcephaly, intracranial calcification, and cerebrospinal fluid lymphocytosis with increased interferon-α concentrations. The clinical features of AGS overlap with fetal cerebral anomalies caused by congenital infections, such as TORCH (toxoplasmosis, other, rubella, cytomegalovirus, and herpes), or with those of other genetic disorders showing neonatal microcephaly, including Cockayne syndrome (CS) with transcription-coupled DNA repair deficiency, and Seckel syndrome (SS) showing aberrant cell-cycle checkpoint signaling. Therefore, a differential diagnosis to confirm the genetic cause or a proof of infection should be considered. In this report, we describe an individual who showed primordial dwarfism and encephalopathy, and whose initial diagnosis was CS. First, we conducted conventional DNA repair proficiency tests for the patient derived fibroblast cells. Transcription-coupled nucleotide excision repair (TC-NER) activity, which is mostly compromised in CS cases, was slightly reduced in the patient's cells. However, unscheduled DNA synthesis (UDS) was significantly diminished. These cellular traits were inconsistent with the diagnosis of CS. We further performed whole exome sequencing for the case and identified a compound heterozygous loss-of-function variants in the SAMHD1 gene, mutations in which are known to cause AGS. As SAMHD1 encodes deoxyribonucleoside triphosphate triphosphohydrolase, we reasoned that the deoxyribonucleoside triphosphate (dNTP) pool size in the patient's cells was elevated, and the labeling efficiency of UDS-test was hindered due to the reduced concentration of phosphorylated ethynyl deoxyuridine (EdU), a nucleoside analogue used for the assay. In conclusion, UDS assay may be a useful diagnostic tool to distinguish between AGS with SAMHD1 mutations and other related diseases.
Project description:The SAMHD1 protein is an HIV-1 restriction factor that is targeted by the HIV-2 accessory protein Vpx in myeloid lineage cells. Mutations in the SAMHD1 gene cause Aicardi-Goutières syndrome, a genetic disease that mimics congenital viral infection. To determine the physiological function of the SAMHD1 protein, the SAMHD1 gene was cloned, recombinant protein was produced, and the catalytic activity of the purified enzyme was identified. We show that SAMHD1 contains a dGTP-regulated deoxynucleotide triphosphohydrolase. We propose that Vpx targets SAMHD1 for degradation in a viral strategy to control cellular deoxynucleotide levels for efficient replication.
Project description:BackgroundBecause of the broad clinical spectrum, heritable autoinflammatory diseases present a management and therapeutic challenge. The most common genetic interferonopathy, Aicardi Goutières Syndrome (AGS), is associated with early onset neurologic disability and systemic inflammation. The chronic inflammation of AGS is the result of dysregulation of interferon (IFN) expression by one of nine genes within converging pathways. While each AGS subtype shares common features, distinct patterns of severity and potential for systemic complications amongst the genotypes are emerging. Multilineage cytopenias are a potentially serious, but poorly understood, complication of AGS. As immunomodulatory treatment options are developed, it is important to characterize the role of the disease versus treatment in hematologic abnormalities. This will allow for better understanding and management of cytopenia.MethodsIn total, 142 individuals with molecularly-confirmed AGS were included. Information on genotype, demographics, and all available hematologic laboratory values were collected from existing medical records. As part of a clinical trial, a subset of this cohort (n = 52) were treated with a janus kinase inhibitor (baricitinib), and both pre- and post-treatment values were included. Abnormal values were graded based on Common Terminology Criteria for Adverse Events (CTCAE v5.0), supplemented with grading definitions for thrombocytosis, and were compared across genotypes and baricitinib exposure.ResultsIn total, 11,184 laboratory values were collected over a median of 2.54 years per subject (range 0-22.68 years). To reduce bias from repeated sampling within a limited timeframe, laboratory results were restricted to the most abnormal value within a month (n = 8485). The most common abnormalities were anemia (noted in 24% of subjects prior to baricitinib exposure), thrombocytopenia (9%), and neutropenia (30%). Neutropenia was most common in the SAMHD1 cohort and increased with baricitinib exposure (38/69 measurements on baricitinib versus 14/121 while not on baricitinib). Having an abnormality prior to treatment was associated with having an abnormality on treatment for neutropenia and thrombocytopenia.ConclusionBy collecting available laboratory data throughout the lifespan, we were able to identify novel patterns of hematologic abnormalities in AGS. We found that AGS results in multilineage cytopenias not limited to the neonatal period. Neutropenia, anemia, and thrombocytopenia were common. Moderate-severe graded events of neutropenia, anemia, and leukopenia were more common on baricitinib, but rarely of clinical consequence. Based on these results, we would recommend careful monitoring of hematologic parameters of children affected by AGS throughout the lifespan, especially while on therapy, and consideration of AGS as a potential differential diagnosis in children with neurologic impairment of unclear etiology with hematologic abnormalities. Trial registration ClinicalTrials.gov Identifier: NCT01724580 ClinicalTrials.gov Identifier: NCT03921554.
Project description:Aicardi-Goutières syndrome (AGS) is a monogenic type-I interferonopathy that results in neurologic injury. The systemic impact of sustained interferon activation is less well characterized. Liver inflammation is known to be associated with the neonatal form of AGS, but the incidence of AGS-related hepatitis across lifespan is unknown.We compared natural history data including liver enzyme levels with markers of inflammation, (liver-specific autoantibodies and interferon signaling gene expression[ISG] scores). Liver enzymes were classified as normal or elevated by the fold increase over the upper limit of normal (ULN). The highest increases were designated as hepatitis, defined as aspartate-aminotransferase or alanine-aminotransferase threefold ULN, or gamma-glutamyl transferase 2.5-fold ULN. A larger cohort was used to further characterize the longitudinal incidence of liver abnormalities and the association with age and genotype.Across the AGS cohort (n = 102), elevated liver enzymes were identified in 76 individuals (74.5%) with abnormalities at a level consistent with hepatitis in 29 individuals (28.4%). SAMHD1 mutations were less likely to be associated with hepatitis (log-rank test; p = 0.011). Hepatitis was associated with early-onset disease and microcephaly (log-rank test; microcephaly p = 0.0401, age onset p = 0.0355). While most subjects (n = 20/33) were found to have liver-specific autoantibodies, there was no association between the presence of autoantibodies or ISG scores with hepatitis-level enzyme elevations.In conclusion, all genotypes of AGS are associated with transient elevations of liver enzymes and the presence of liver-associated autoantibodies. This adds to our growing understanding of the systemic pathology AGS.
Project description:Aicardi Goutières syndrome is a monogenic interferonopathy caused by abnormalities in the intracellular nucleic acid sensing machinery (TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR1, or IFIH1). Most individuals affected by Aicardi Goutières syndrome exhibit some degree of neurologic impairment, from spastic paraparesis with relatively preserved cognition to tetraparesis and severe intellectual disability. Because of this heterogeneity, it is important to fully characterize the developmental trajectory in Aicardi Goutières syndrome. To characterize the clinical presentation in Aicardi Goutières syndrome, early features were collected from an international cohort of children (n = 100) with genetically confirmed Aicardi Goutières syndrome. There was a heterogeneous age of onset, with overlapping clusters of presenting symptoms: altered mental status, systemic inflammatory symptoms, and acute neurologic disability. Next, we created genotype-specific developmental milestone acquisition curves. Individuals with microcephaly or TREX1-related Aicardi Goutières syndrome secondary were the most severely affected and less likely to reach milestones, including head control, sitting, and nonspecific mama/dada. Individuals affected by SAMHD1, IFIH1, and ADAR attained the most advanced milestones, with 44% achieving verbal communication and 31% independently ambulating. Retrospective function scales (Gross Motor Function Classification System, Manual Ability Classification System, and Communication Function Classification System) demonstrated that two-thirds of the Aicardi Goutières syndrome population are severely affected. Our results suggest multifactorial influences on developmental trajectory, including a strong contribution from genotype. Further studies are needed to identify the additional factors that influence overall outcomes to better counsel families and to design clinical trials with appropriate clinical endpoints.