Unknown

Dataset Information

0

Intrinsic mechanical sensitivity of mammalian auditory neurons as a contributor to sound-driven neural activity.


ABSTRACT: Mechanosensation - by which mechanical stimuli are converted into a neuronal signal - is the basis for the sensory systems of hearing, balance, and touch. Mechanosensation is unmatched in speed and its diverse range of sensitivities, reaching its highest temporal limits with the sense of hearing; however, hair cells (HCs) and the auditory nerve (AN) serve as obligatory bottlenecks for sounds to engage the brain. Like other sensory neurons, auditory neurons use the canonical pathway for neurotransmission and millisecond-duration action potentials (APs). How the auditory system utilizes the relatively slow transmission mechanisms to achieve ultrafast speed, and high audio-frequency hearing remains an enigma. Here, we address this paradox and report that the mouse, and chinchilla, AN are mechanically sensitive, and minute mechanical displacement profoundly affects its response properties. Sound-mimicking sinusoidal mechanical and electrical current stimuli affect phase-locked responses. In a phase-dependent manner, the two stimuli can also evoke suppressive responses. We propose that mechanical sensitivity interacts with synaptic responses to shape responses in the AN, including frequency tuning and temporal phase locking. Combining neurotransmission and mechanical sensation to control spike patterns gives the mammalian AN a secondary receptor role, an emerging theme in primary neuronal functions.

SUBMITTER: Perez-Flores MC 

PROVIDER: S-EPMC8942473 | biostudies-literature | 2022 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Intrinsic mechanical sensitivity of mammalian auditory neurons as a contributor to sound-driven neural activity.

Perez-Flores Maria C MC   Verschooten Eric E   Lee Jeong Han JH   Kim Hyo Jeong HJ   Joris Philip X PX   Yamoah Ebenezer N EN  

eLife 20220310


Mechanosensation - by which mechanical stimuli are converted into a neuronal signal - is the basis for the sensory systems of hearing, balance, and touch. Mechanosensation is unmatched in speed and its diverse range of sensitivities, reaching its highest temporal limits with the sense of hearing; however, hair cells (HCs) and the auditory nerve (AN) serve as obligatory bottlenecks for sounds to engage the brain. Like other sensory neurons, auditory neurons use the canonical pathway for neurotran  ...[more]

Similar Datasets

| S-EPMC4111082 | biostudies-literature
| S-EPMC7852074 | biostudies-literature
| S-EPMC3331670 | biostudies-literature
| S-EPMC3439509 | biostudies-literature
| S-EPMC2752526 | biostudies-literature
| S-EPMC6616358 | biostudies-literature
| S-EPMC6742420 | biostudies-literature
| S-EPMC4467028 | biostudies-literature
| S-EPMC10191263 | biostudies-literature
| S-EPMC11434013 | biostudies-literature