Project description:BackgroundDuring the COVID-19 pandemic, the UK government implemented a series of guidelines, rules, and restrictions to change citizens' behaviour to tackle the spread of the virus, such as the promotion of face masks and the imposition of lockdown stay-at-home orders. The success of such measures requires active co-operation on the part of citizens, but compliance was not complete. Detailed research is required on the factors that aided or hindered compliance with these measures.MethodsTo understand the facilitators and barriers to compliance with COVID-19 guidelines, we used structural topic modelling, a text mining technique, to extract themes from over 26,000 free-text survey responses from 17,500 UK adults, collected between 17 November and 23 December 2020.ResultsThe main factors facilitating compliance were desires to reduce risk to oneself and one's family and friends and to, a lesser extent, the general public. Also of importance were a desire to return to normality, the availability of activities and technological means to contact family and friends, and the ability to work from home. Identified barriers were difficulties maintaining social distancing in public (due to the actions of other people or environmental constraints), the need to provide or receive support from family and friends, social isolation, missing loved ones, and mental health impacts, perceiving the risks as low, social pressure to not comply, and difficulties understanding and keep abreast of changing rules. Several of the barriers and facilitators raised were related to participant characteristics. Notably, women were more likely to discuss needing to provide or receive mental health support from friends and family.ConclusionThe results demonstrated an array of factors contributed to compliance with guidelines. Of particular policy importance, the results suggest that government communication that emphasizes the potential risks of the virus and provides simple, consistent guidance on how to reduce the spread of the virus would improve compliance with preventive behaviours as COVID-19 continues and for future pandemics.
Project description:BackgroundThe COVID-19 pandemic has had substantial impacts on lives across the globe. Job losses have been widespread, and individuals have experienced significant restrictions on their usual activities, including extended isolation from family and friends. While studies suggest population mental health worsened from before the pandemic, not all individuals appear to have experienced poorer mental health. This raises the question of how people managed to cope during the pandemic.MethodsTo understand the coping strategies individuals employed during the COVID-19 pandemic, we used structural topic modelling, a text mining technique, to extract themes from free-text data on coping from over 11,000 UK adults, collected between 14 October and 26 November 2020.ResultsWe identified 16 topics. The most discussed coping strategy was 'thinking positively' and involved themes of gratefulness and positivity. Other strategies included engaging in activities and hobbies (such as doing DIY, exercising, walking and spending time in nature), keeping routines, and focusing on one day at a time. Some participants reported more avoidant coping strategies, such as drinking alcohol and binge eating. Coping strategies varied by respondent characteristics including age, personality traits and sociodemographic characteristics and some coping strategies, such as engaging in creative activities, were associated with more positive lockdown experiences.ConclusionA variety of coping strategies were employed by individuals during the COVID-19 pandemic. The coping strategy an individual adopted was related to their overall lockdown experiences. This may be useful for helping individuals prepare for future lockdowns or other events resulting in self-isolation.
Project description:BackgroundHealthcare workers (HCWs) have provided vital services during the COVID-19 pandemic, but existing research consists of quantitative surveys (lacking in depth or context) or qualitative interviews (with limited generalisability). Structural Topic Modelling (STM) of large-scale free-text survey data offers a way of capturing the perspectives of a wide range of HCWs in their own words about their experiences of the pandemic.MethodsIn an online survey distributed to all staff at 18 geographically dispersed NHS Trusts, we asked respondents, "Is there anything else you think we should know about your experiences of the COVID-19 pandemic?". We used STM on 7,412 responses to identify topics, and thematic analysis on the resultant topics and text excerpts.ResultsWe identified 33 topics, grouped into two domains, each containing four themes. Our findings emphasise: the deleterious effect of increased workloads, lack of PPE, inconsistent advice/guidance, and lack of autonomy; differing experiences of home working as negative/positive; and the benefits of supportive leadership and peers in ameliorating challenges. Themes varied by demographics and time: discussion of home working decreasing over time, while discussion of workplace challenges increased. Discussion of mental health was lowest between September-November 2020, between the first and second waves of COVID-19 in the UK.DiscussionOur findings represent the most salient experiences of HCWs through the pandemic. STM enabled statistical examination of how the qualitative themes raised differed according to participant characteristics. This relatively underutilised methodology in healthcare research can provide more nuanced, yet generalisable, evidence than that available via surveys or small interview studies, and should be used in future research.
Project description:This study investigated the emergence and use of Twitter, as of July 2023 being rebranded as X, as the main forum for social media communication in parasitology. A dataset of tweets was constructed using a keyword search of Twitter with the search terms ‘malaria’, ‘Plasmodium’, ‘Leishmania’, ‘Trypanosoma’, ‘Toxoplasma’ and ‘Schistosoma’ for the period from 2011 to 2020. Exploratory data analyses of tweet content were conducted, including language, usernames and hashtags. To identify parasitology topics of discussion, keywords and phrases were extracted using KeyBert and biterm topic modelling. The sentiment of tweets was analysed using VADER. The results show that the number of tweets including the keywords increased from 2011 (for malaria) and 2013 (for the others) to 2020, with the highest number of tweets being recorded in 2020. The maximum number of yearly tweets for Plasmodium, Leishmania, Toxoplasma, Trypanosoma and Schistosoma was recorded in 2020 (2804, 2161, 1570, 680 and 360 tweets, respectively). English was the most commonly used language for tweeting, although the percentage varied across the searches. In tweets mentioning Leishmania, only ∼37% were in English, with Spanish being more common. Across all the searches, Portuguese was another common language found. Popular tweets on Toxoplasma contained keywords relating to mental health including depression, anxiety and schizophrenia. The Trypanosoma tweets referenced drugs (benznidazole, nifurtimox) and vectors (bugs, triatomines, tsetse), while the Schistosoma tweets referenced areas of biology including pathology, eggs and snails. A wide variety of individuals and organisations were shown to be associated with Twitter activity. Many journals in the parasitology arena regularly tweet about publications from their journal, and professional societies promote activity and events that are important to them. These represent examples of trusted sources of information, often by experts in their fields. Social media activity of influencers, however, who have large numbers of followers, might have little or no training in science. The existence of such tweeters does raise cause for concern to parasitology, as one may start to question the quality of information being disseminated. Graphical abstract Image 1 Highlights • Study of Twitter as the main forum for social media communication in parasitology.• English, Spanish and Portuguese, amongst others, were predominantly the most commonly used languages for tweeting.• Tweeters include citizens, scientists plus a wide range of organisations.• Topics discussed are very domain specific, e.g. Toxoplasma and mental health.• The need for E-Professionalism is discussed.
Project description:We present cisTopic, a probabilistic framework to simultaneously discover co-accessible enhancers and stable cell states from sparse single-cell epigenomics data (http://github.com/aertslab/cistopic). On a compendium of single-cell ATAC-seq datasets from differentiating hematopoietic cells, brain, and transcription-factor perturbation dynamics, we demonstrate that topic modelling can be exploited for a robust identification of cell types, enhancers, and relevant transcription factors. cisTopic provides insight into the mechanisms underlying regulatory heterogeneity within cell populations.
Project description:BackgroundPatient-reported experience surveys allow administrators, clinicians, and researchers to quantify and improve health care by receiving feedback directly from patients. Existing research has focused primarily on quantitative analysis of survey items, but these measures may collect optional free-text comments. These comments can provide insights for health systems but may not be analyzed due to limited resources and the complexity of traditional textual analysis. However, advances in machine learning-based natural language processing provide opportunities to learn from this traditionally underused data source.ObjectiveThis study aimed to apply natural language processing to model topics found in free-text comments of patient-reported experience surveys.MethodsConsumer Assessment of Healthcare Providers and Systems-derived patient experience surveys were collected and linked to administrative inpatient records by the provincial health services organization responsible for inpatient care. Unsupervised topic modeling with automated labeling was performed with BERTopic. Sentiment analysis was performed to further assist in topic description.ResultsBetween April 2016 and February 2020, 43.4% (43,522/100,272) adult patients and 46.9% (3501/7464) pediatric caregivers included free-text responses on completed patient experience surveys. Topic models identified 86 topics among adult survey responses and 35 topics among pediatric responses that included elements of care not currently surveyed by existing questionnaires. Frequent topics were generally positive.ConclusionsWe found that with limited tuning, BERTopic identified care experience topics with interpretable automated labeling. Results are discussed in the context of person-centered care, patient safety, and health care quality improvement. Furthermore, we note the opportunity for the identification of temporal and site-specific trends as a method to identify patient care and safety concerns. As the use of patient experience measurement increases in health care, we discuss how machine learning can be leveraged to provide additional insight on patient experiences.
Project description:Couple and family researchers often collect open-ended linguistic data-either through free-response questionnaire items, or transcripts of interviews or therapy sessions. Because participants' responses are not forced into a set number of categories, text-based data can be very rich and revealing of psychological processes. At the same time, it is highly unstructured and challenging to analyze. Within family psychology, analyzing text data typically means applying a coding system, which can quantify text data but also has several limitations, including the time needed for coding, difficulties with interrater reliability, and defining a priori what should be coded. The current article presents an alternative method for analyzing text data called topic models (Steyvers & Griffiths, 2006), which has not yet been applied within couple and family psychology. Topic models have similarities to factor analysis and cluster analysis in that they identify underlying clusters of words with semantic similarities (i.e., the "topics"). In the present article, a nontechnical introduction to topic models is provided, highlighting how these models can be used for text exploration and indexing (e.g., quickly locating text passages that share semantic meaning) and how output from topic models can be used to predict behavioral codes or other types of outcomes. Throughout the article, a collection of transcripts from a large couple-therapy trial (Christensen et al., 2004) is used as example data to highlight potential applications. Practical resources for learning more about topic models and how to apply them are discussed.
Project description:BackgroundSeveral quantitative studies have found a decline in physical activity in response to COVID-19 pandemic restrictions. The aim of the present study was to use large-scale free text survey data to qualitatively gain a more in-depth understanding of the impact of the COVID-19 pandemic on physical activity, then map barriers and facilitators to the Capability, Opportunity, Motivation, and Behaviour (COM-B) Model of Behaviour to aid future intervention development.Methods17,082 participants provided a response to the free text module, and data from those who mentioned a physical activity related word in any context were included. Data were analysed using thematic analysis and key themes identified.Results5396 participants provided 7490 quotes related to physical activity. The sample were predominately female (84%), white (British/Irish/Other) (97%) and aged <60 years (57%). Seven key themes were identified: the importance of outdoor space, changes in daily routine, COVID-19 restrictions prevented participation, perceived risks or threats to participation, the importance of physical health, the importance of physical activity for mental health and the use of technology.ConclusionFuture physical activity interventions could encourage people to walk outdoors, which is low cost, flexible, and accessible to many. Developing online resources to promote and support physical activity provides a flexible way to deliver quality content to a large audience.
Project description:With the exponential growth in the daily publication of scientific articles, automatic classification and categorization can assist in assigning articles to a predefined category. Article titles are concise descriptions of the articles' content with valuable information that can be useful in document classification and categorization. However, shortness, data sparseness, limited word occurrences, and the inadequate contextual information of scientific document titles hinder the direct application of conventional text mining and machine learning algorithms on these short texts, making their classification a challenging task. This study firstly explores the performance of our earlier study, TextNetTopics on the short text. Secondly, here we propose an advanced version called TextNetTopics Pro, which is a novel short-text classification framework that utilizes a promising combination of lexical features organized in topics of words and topic distribution extracted by a topic model to alleviate the data-sparseness problem when classifying short texts. We evaluate our proposed approach using nine state-of-the-art short-text topic models on two publicly available datasets of scientific article titles as short-text documents. The first dataset is related to the Biomedical field, and the other one is related to Computer Science publications. Additionally, we comparatively evaluate the predictive performance of the models generated with and without using the abstracts. Finally, we demonstrate the robustness and effectiveness of the proposed approach in handling the imbalanced data, particularly in the classification of Drug-Induced Liver Injury articles as part of the CAMDA challenge. Taking advantage of the semantic information detected by topic models proved to be a reliable way to improve the overall performance of ML classifiers.
Project description:BackgroundUse of routinely collected patient data for research and service planning is an explicit policy of the UK National Health Service and UK government. Much clinical information is recorded in free-text letters, reports and notes. These text data are generally lost to research, due to the increased privacy risk compared with structured data. We conducted a citizens' jury which asked members of the public whether their medical free-text data should be shared for research for public benefit, to inform an ethical policy.MethodsEighteen citizens took part over 3 days. Jurors heard a range of expert presentations as well as arguments for and against sharing free text, and then questioned presenters and deliberated together. They answered a questionnaire on whether and how free text should be shared for research, gave reasons for and against sharing and suggestions for alleviating their concerns.ResultsJurors were in favour of sharing medical data and agreed this would benefit health research, but were more cautious about sharing free-text than structured data. They preferred processing of free text where a computer extracted information at scale. Their concerns were lack of transparency in uses of data, and privacy risks. They suggested keeping patients informed about uses of their data, and giving clear pathways to opt out of data sharing.ConclusionsInformed citizens suggested a transparent culture of research for the public benefit, and continuous improvement of technology to protect patient privacy, to mitigate their concerns regarding privacy risks of using patient text data.