Unknown

Dataset Information

0

Plasmonic Strain Sensors Based on Au-TiO2 Thin Films on Flexible Substrates.


ABSTRACT: This study aimed at introducing thin films exhibiting the localized surface plasmon resonance (LSPR) phenomenon with a reversible optical response to repeated uniaxial strain. The sensing platform was prepared by growing gold (Au) nanoparticles throughout a titanium dioxide dielectric matrix. The thin films were deposited on transparent polymeric substrates, using reactive magnetron sputtering, followed by a low temperature thermal treatment to grow the nanoparticles. The microstructural characterization of the thin films' surface revealed Au nanoparticle with an average size of 15.9 nm, an aspect ratio of 1.29 and an average nearest neighbor nanoparticle at 16.3 nm distance. The plasmonic response of the flexible nanoplasmonic transducers was characterized with custom-made mechanical testing equipment using simultaneous optical transmittance measurements. The higher sensitivity that was obtained at a maximum strain of 6.7%, reached the values of 420 nm/ε and 110 pp/ε when measured at the wavelength or transmittance coordinates of the transmittance-LSPR band minimum, respectively. The higher transmittance gauge factor of 4.5 was obtained for a strain of 10.1%. Optical modelling, using discrete dipole approximation, seems to correlate the optical response of the strained thin film sensor to a reduction in the refractive index of the matrix surrounding the gold nanoparticles when uniaxial strain is applied.

SUBMITTER: Rodrigues MS 

PROVIDER: S-EPMC8963073 | biostudies-literature | 2022 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Plasmonic Strain Sensors Based on Au-TiO<sub>2</sub> Thin Films on Flexible Substrates.

Rodrigues Marco S MS   Borges Joel J   Vaz Filipe F  

Sensors (Basel, Switzerland) 20220211 4


This study aimed at introducing thin films exhibiting the localized surface plasmon resonance (LSPR) phenomenon with a reversible optical response to repeated uniaxial strain. The sensing platform was prepared by growing gold (Au) nanoparticles throughout a titanium dioxide dielectric matrix. The thin films were deposited on transparent polymeric substrates, using reactive magnetron sputtering, followed by a low temperature thermal treatment to grow the nanoparticles. The microstructural charact  ...[more]

Similar Datasets

| S-EPMC6316936 | biostudies-literature
| S-EPMC4450582 | biostudies-literature
| S-EPMC6213899 | biostudies-literature
| S-EPMC6329775 | biostudies-literature
| S-EPMC7248731 | biostudies-literature
| S-EPMC10654890 | biostudies-literature
| S-EPMC9736632 | biostudies-literature
| S-EPMC10044483 | biostudies-literature
| S-EPMC4168693 | biostudies-literature
| S-EPMC6603111 | biostudies-literature