Project description:BackgroundThe COVID-19 pandemic impacts different health aspects. Concomitant with the adoption of non-pharmaceutical interventions (NPIs) to reduce the spread of SARS-CoV-2, global surveillance studies reported a reduction in occurrence of respiratory pathogens like influenza A and B virus (IAV & IBV) and respiratory syncytial virus (RSV). We hypothesized to observe this collateral benefit on viral respiratory infection epidemiology in young children.MethodsRespiratory samples of children aged below 6 years, presenting at the outpatient clinic, emergency department, or pediatric infectious diseases department of the University Hospitals Leuven, between April 2017 and April 2021 were retrospectively analyzed. The occurrence (positivity rate), and seasonal patterns of viral respiratory infections were described. Chi-squared or Fisher's exact test (and Bonferroni correction) were used to explore differences in occurrence between 2020-2021 and previous 12-month (April to April) periods.ResultsWe included 3020 samples (453 respiratory panels, 2567 single SARS-CoV-2 PCR tests). IAV and IBV were not detected from March and January 2020, respectively. For IAV, positivity rate in 2020-2021 (0%, n = 0) was significantly different from 2018-2019 (12.4%, n = 17) (p < 0.001) and 2019-2020 (15.4%, n = 19) (p < 0.001). IBV positivity rate in 2020-2021 (0%, n = 0) was not significantly different from previous periods. RSV occurrence was significantly lower in 2020-2021 (3.2%, n = 3), compared to 2017-2018 (15.0%, n = 15) (p = 0.006), 2018-2019 (16.1%, n = 22) (p = 0.002) and 2019-2020 (22.8%, n = 28) (p < 0.001). The RSV (winter) peak was absent and presented later (March-April 2021). Positivity rate of parainfluenza virus 3 (PIV-3) was significantly higher in 2020-2021 (11.8%, n = 11) than 2017-2018 (1%, n = 1) (p = 0.002). PIV-3 was absent from April 2020 to January 2021, whereas no clear seasonal pattern was distinguished the other years. For the other viruses tested, no significant differences in occurrence were observed between 2020-2021 and previous periods. From March 2020 onwards, 20 cases (0.7%) of SARS-CoV-2 were identified.ConclusionThese findings reinforce the hypothesis of NPIs impacting the epidemiology of influenza viruses and RSV in young children. Compared to previous periods, no IAV and IBV cases were observed in the 2020-2021 study period, and the RSV peak occurred later. Since the pandemic is still ongoing, continuation of epidemiological surveillance, even on a larger scale, is indicated.
Project description:Respiratory viruses, including coronaviruses, are known to have a high incidence of infection during winter, especially in temperate regions. Dry and cold conditions during winter are the major drivers for increased respiratory tract infections as they increase virus stability and transmission and weaken the host immune system. The novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) emerged in China in December 2020 and swiftly spread across the globe causing substantial health and economic burdens. Several countries are battling with the second wave of the virus after a devastating first wave of spread, while some are still in the midst of their first wave. It remains unclear whether SARS-CoV-2 will eventually become seasonal or will continue to circulate year-round. In an attempt to address this question, we review the current knowledge regarding the seasonality of respiratory viruses including coronaviruses and the viral and host factors that govern their seasonal pattern. Moreover, we discuss the properties of SARS-CoV-2 and the potential impact of meteorological factors on its spread.
Project description:Stringent nonpharmaceutical interventions (NPIs) such as lockdowns and border closures are not currently recommended for pandemic influenza control. New Zealand used these NPIs to eliminate coronavirus disease 2019 during its first wave. Using multiple surveillance systems, we observed a parallel and unprecedented reduction of influenza and other respiratory viral infections in 2020. This finding supports the use of these NPIs for controlling pandemic influenza and other severe respiratory viral threats.
Project description:Stringent nonpharmaceutical interventions (NPIs) such as lockdowns and border closures are not currently recommended for pandemic influenza control. New Zealand used these NPIs to eliminate coronavirus disease 2019 during its first wave. Using multiple surveillance systems, we observed a parallel and unprecedented reduction of influenza and other respiratory viral infections in 2020. This finding supports the use of these NPIs for controlling pandemic influenza and other severe respiratory viral threats.
Project description:BackgroundViral infections of the upper respiratory tract are one of the most common causes of febrile seizures (FSs). During the coronavirus disease-2019 (COVID-19) pandemic, mitigation measures have contributed to changes in the incidence of respiratory viral infections. Therefore, we aimed to evaluate the impact of the COVID-19 pandemic on the incidence of respiratory viral infections and clinical characteristics of FSs.MethodsWe retrospectively reviewed the medical records of 988 episodes of FS (865 before the pandemic and 123 during the pandemic) between March 2016 and February 2022. Seizure characteristics and their outcomes, along with the distribution of identified respiratory viruses were compared before and during the pandemic.ResultsThe occurrence of FSs decreased during the COVID-19 pandemic compared to that before the pandemic. A substantial reduction in the incidence of influenza virus infections was observed (P<0.001) during the pandemic, while the incidence of rhinovirus infection was not significantly changed (P=0.811). Interestingly, a significantly high incidence of parainfluenza virus (P=0.001) infections was observed during the pandemic. No statistically significant between-group differences were observed in the clinical presentation and outcomes of FSs before and during the pandemic.ConclusionsDespite epidemiological changes in respiratory viral infections, the clinical characteristics and outcomes of FSs before and during the COVID-19 pandemic were comparable.
Project description:Acute respiratory infections (ARIs) impose a major public health burden on fragile healthcare systems of developing Southeast Asian countries such as Vietnam. The epidemiology, genetic diversity and transmission patterns of respiratory viral pathogens that circulate in this region are not well characterized. We used RT-PCR to screen for 14 common respiratory viruses in nasal/throat samples from 4326 ARI patients from 5 sites in Vietnam during 2012-2016. 64% of patients tested positive for viruses; 14% tested positive multiple co-infecting viruses. The most frequently detected viruses were Respiratory syncytial virus (RSV, 23%), Human Rhinovirus (HRV, 13%), Influenza A virus (IAV, 11%) and Human Bocavirus (HBoV, 7%). RSV infections peaked in July to October, were relatively more common in children <1 year and in the northernmost hospital. IAV infections peaked in December to February and were relatively more common in patients >5 years in the central region. Coinfection with IAV or RSV was associated with increased disease severity compared with patients only infected with HBoV or HRV. Over a hundred genomes belonging to 13 families and 24 genera were obtained via metagenomic sequencing, including novel viruses and viruses less commonly associated with ARIs. Phylogenetic and phylogeographic analyses further indicated that neighboring countries were the most likely source of many virus lineages causing ARIs in Vietnam and estimated the period that specific lineages have been circulating. Our study illustrates the value of applying the state-of-the-art virus diagnostic methods (multiplex RT-PCR and metagenomic sequencing) and phylodynamic analyses at a national level to generate an integrated picture of viral ARI epidemiology.
Project description:We aimed to investigate the epidemiological characteristics of non-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) respiratory pathogens among patients with acute respiratory infections (ARIs) in Shijiazhuang, China, during the coronavirus disease 2019 (COVID-19) pandemic (January 2021--December 2022) and after the relaxation of COVID-19 restrictive measures (January 2022--December 2023). This retrospective study enrolled 6,633 ARIs patients who visited the Hebei General Hospital between 2021- and 2023. Nasopharyngeal swabs samples were collected for multiplex PCR detection of 13 common respiratory pathogens. Respiratory pathogens were detected in 31.58% of individuals diagnosed with ARIs, whileereas a co-infection with multiple pathogens was observed in 8.5% of the ARI patients. In the years 2021 and 2022, 326 (27.63%) and 283 (24.38%) respiratory pathogens were found to be positive, respectively, during the COVID-19 pandemic. However, in 2023, subsequent to the easing of COVID-19 restrictions, the positivity rate significantly rose to 34.62%, with 4,292 cases identified. The majority of positive cases over the last three3 years were concentrated in patients under 14 years old. The predominant pathogens identified were human rhinovirus (HRVs) (15.08%) in 2021, mycoplasma pneumonia (MP) (6.46%) in 2022, and influenza A virus (FluA) (11.35%) in 2023. Seasonal prevalence patterns of most pathogens were affected, except for parainfluenza virus (PIV). There was a simultaneous increase in the positive cases and positivity rates of FluA and adenovirus (ADV) Iin 2023, compared to 2021 and 2022. Additionally, the infection rates of respiratory syncytial virus (RSV), MP, and coronavirus (CoV) in 2023 either exceeded or were comparable to those in 2021 and 2022. Conversely, the positivity rates of PIV, RVs, metapneumovirus (MPV), and influenza B virus (FluB) were lower in 2023 compared to 2021 or 2022.ImportanceThe implementation of strict non-pharmaceutical interventions (NPIs) during the coronavirus disease 2019 (COVID-19) pandemic may lead to changes in the epidemiological features of respiratory pathogens, as well as the occurrence of immune debt, potentially causing a resurgence in respiratory pathogen activity following the easing of strict NPIs measures. There are limited reports on the epidemiological characteristics of respiratory pathogens among patients of all ages with acute respiratory infections (ARIs) during the COVID-19 pandemic and after the easing of COVID-19 restrictions. Our study investigated the epidemiology of 13 respiratory pathogens in Shijiazhuang, China, from January 2021 to December 2023. Thisese data isare crucial for the ongoing surveillance of epidemiological shifts in respiratory pathogens during and post the -COVID-19 pandemic, and serves as a scientific foundation for the prevention and management of ARIs.
Project description:BackgroundNew Zealand's (NZ) complete absence of community transmission of influenza and respiratory syncytial virus (RSV) after May 2020, likely due to COVID-19 elimination measures, provided a rare opportunity to assess the impact of border restrictions on common respiratory viral infections over the ensuing 2 years.MethodsWe collected the data from multiple surveillance systems, including hospital-based severe acute respiratory infection surveillance, SHIVERS-II, -III and -IV community cohorts for acute respiratory infection (ARI) surveillance, HealthStat sentinel general practice (GP) based influenza-like illness surveillance and SHIVERS-V sentinel GP-based ARI surveillance, SHIVERS-V traveller ARI surveillance and laboratory-based surveillance. We described the data on influenza, RSV and other respiratory viral infections in NZ before, during and after various stages of the COVID related border restrictions.ResultsWe observed that border closure to most people, and mandatory government-managed isolation and quarantine on arrival for those allowed to enter, appeared to be effective in keeping influenza and RSV infections out of the NZ community. Border restrictions did not affect community transmission of other respiratory viruses such as rhinovirus and parainfluenza virus type-1. Partial border relaxations through quarantine-free travel with Australia and other countries were quickly followed by importation of RSV in 2021 and influenza in 2022.ConclusionOur findings inform future pandemic preparedness and strategies to model and manage the impact of influenza and other respiratory viral threats.
Project description:ObjectiveFew studies have explored the clinical features in children infected with SARS-CoV-2 and other common respiratory viruses, including respiratory syncytial virus (RSV), Influenza virus (IV), and adenovirus (ADV). Herein, we reported the clinical characteristics and cytokine profiling in children with COVID-19 or other acute respiratory tract infections (ARTI).MethodsWe enrolled 20 hospitalized children confirmed as COVID-19 positive, 58 patients with ARTI, and 20 age and sex-matched healthy children. The clinical information and blood test results were collected. A total of 27 cytokines and chemokines were measured and analyzed.ResultsThe median age in the COVID-19 positive group was 14.5 years, which was higher than that of the ARTI groups. Around one-third of patients in the COVID-19 group experienced moderate fever, with a peak temperature of 38.27°C. None of the patients displayed wheezing or dyspnea. In addition, patients in the COVID-19 group had lower white blood cells, platelet counts as well as a neutrophil-lymphocyte ratio. Lower serum concentrations of 14 out of 27 cytokines were observed in the COVID-19 group than in healthy individuals. Seven cytokines (IL-1Ra, IL-1β, IL-9, IL-10, TNF-α, MIP-1α, and VEGF) changed serum concentration in COVID-19 compared with other ARTI groups.ConclusionPatients with COVID-19 were older and showed milder symptoms and a favorable prognosis than ARTI caused by RSV, IV, and ADV. There was a low grade or constrained innate immune reaction in children with mild COVID-19.