Unknown

Dataset Information

0

MbDenoise: microbiome data denoising using zero-inflated probabilistic principal components analysis.


ABSTRACT: The analysis of microbiome data has several technical challenges. In particular, count matrices contain a large proportion of zeros, some of which are biological, whereas others are technical. Furthermore, the measurements suffer from unequal sequencing depth, overdispersion, and data redundancy. These nuisance factors introduce substantial noise. We propose an accurate and robust method, mbDenoise, for denoising microbiome data. Assuming a zero-inflated probabilistic PCA (ZIPPCA) model, mbDenoise uses variational approximation to learn the latent structure and recovers the true abundance levels using the posterior, borrowing information across samples and taxa. mbDenoise outperforms state-of-the-art methods to extract the signal for downstream analyses.

SUBMITTER: Zeng Y 

PROVIDER: S-EPMC9011970 | biostudies-literature | 2022 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

mbDenoise: microbiome data denoising using zero-inflated probabilistic principal components analysis.

Zeng Yanyan Y   Li Jing J   Wei Chaochun C   Zhao Hongyu H   Wang Tao T  

Genome biology 20220414 1


The analysis of microbiome data has several technical challenges. In particular, count matrices contain a large proportion of zeros, some of which are biological, whereas others are technical. Furthermore, the measurements suffer from unequal sequencing depth, overdispersion, and data redundancy. These nuisance factors introduce substantial noise. We propose an accurate and robust method, mbDenoise, for denoising microbiome data. Assuming a zero-inflated probabilistic PCA (ZIPPCA) model, mbDenoi  ...[more]

Similar Datasets

| S-EPMC6124506 | biostudies-literature
| S-EPMC11730854 | biostudies-literature
| S-EPMC7768662 | biostudies-literature
| S-EPMC7410344 | biostudies-literature
| S-EPMC11869466 | biostudies-literature
| S-EPMC7652264 | biostudies-literature
| S-EPMC4493133 | biostudies-literature
| S-EPMC8487663 | biostudies-literature
| S-EPMC11814158 | biostudies-literature
| S-EPMC10338028 | biostudies-literature