Unknown

Dataset Information

0

Cadmium Stabilization and Redox Transformation Mechanism in Maize Using Nanoscale Zerovalent-Iron-Enriched Biochar in Cadmium-Contaminated Soil.


ABSTRACT: Cadmium (Cd) is a readily available metal in the soil matrix, which obnoxiously affects plants and microbiota; thus, its removal has become a global concern. For this purpose, a multifunctional nanoscale zerovalent-iron enriched biochar (nZVI/BC) was used to alleviate the Cd-toxicity in maize. Results revealed that the nZVI/BC application significantly enhanced the plant growth (57%), chlorophyll contents (65%), intracellular permeability (61%), and biomass production index (76%) by restraining Cd uptake relative to Cd control. A Cd stabilization mechanism was proposed, suggesting that high dispersion of organic functional groups (C-O, C-N, Fe-O) over the surface of nZVI/BC might induce complex formations with cadmium by the ion exchange process. Besides this, the regular distribution and deep insertion of Fe particles in nZVI/BC prevent self-oxidation and over-accumulation of free radicals, which regulate the redox transformation by alleviating Cd/Fe+ translations in the plant. Current findings have exposed the diverse functions of nanoscale zerovalent-iron-enriched biochar on plant health and suggest that nZVI/BC is a competent material, feasible to control Cd hazards and improve crop growth and productivity in Cd-contaminated soil.

SUBMITTER: Razzaq S 

PROVIDER: S-EPMC9024939 | biostudies-literature | 2022 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Cadmium Stabilization and Redox Transformation Mechanism in Maize Using Nanoscale Zerovalent-Iron-Enriched Biochar in Cadmium-Contaminated Soil.

Razzaq Sehar S   Zhou Beibei B   Zia-Ur-Rehman Muhammad M   Aamer Maqsood Muhammad M   Hussain Saddam S   Bakhsh Ghous G   Zhang Zhenshi Z   Yang Qiang Q   Altaf Adnan Raza AR  

Plants (Basel, Switzerland) 20220414 8


Cadmium (Cd) is a readily available metal in the soil matrix, which obnoxiously affects plants and microbiota; thus, its removal has become a global concern. For this purpose, a multifunctional nanoscale zerovalent-iron enriched biochar (nZVI/BC) was used to alleviate the Cd-toxicity in maize. Results revealed that the nZVI/BC application significantly enhanced the plant growth (57%), chlorophyll contents (65%), intracellular permeability (61%), and biomass production index (76%) by restraining  ...[more]

Similar Datasets

| S-EPMC9493347 | biostudies-literature
| S-EPMC8845445 | biostudies-literature
| S-EPMC5338781 | biostudies-literature
| S-EPMC11644098 | biostudies-literature
| S-EPMC9298784 | biostudies-literature
| S-EPMC9938413 | biostudies-literature
| S-EPMC10802144 | biostudies-literature
| S-EPMC5409506 | biostudies-literature
| S-EPMC11683564 | biostudies-literature
| S-EPMC9565499 | biostudies-literature