Unknown

Dataset Information

0

MiR-124-3p delivered by exosomes from heme oxygenase-1 modified bone marrow mesenchymal stem cells inhibits ferroptosis to attenuate ischemia-reperfusion injury in steatotic grafts.


ABSTRACT:

Background

Steatotic livers tolerate ischemia-reperfusion injury (IRI) poorly, increasing the risk of organ dysfunction. Ferroptosis is considered the initiating factor of organ IRI. Heme oxygenase oxygen-1 (HO-1)-modified bone marrow mesenchymal stem cells (BMMSCs) (HO-1/BMMSCs) can reduce hepatic IRI; however, the role of ferroptosis in IRI of steatotic grafts and the effect of HO-1/BMMSCs-derived exosomes (HM-exos) on ferroptosis remain unknown.

Methods

A model of rat liver transplantation (LT) with a severe steatotic donor liver and a model of hypoxia and reoxygenation (H/R) of steatotic hepatocytes were established. Exosomes were obtained by differential centrifugation, and the differentially expressed genes (DEGs) in liver after HM-exo treatment were detected using RNA sequencing. The expression of ferroptosis markers was analyzed. microRNA (miRNA) sequencing was used to analyze the miRNA profiles in HM-exos.

Results

We verified the effect of a candidate miRNA on ferroptosis of H/R treated hepatocytes, and observed the effect of exosomes knockout of the candidate miRNA on hepatocytes ferroptosis. In vitro, HM-exo treatment reduced the IRI in steatotic grafts, and enrichment analysis of DEGs suggested that HM-exos were involved in the regulation of the ferroptosis pathway. In vitro, inhibition of ferroptosis by HM-exos reduced hepatocyte injury. HM-exos contained more abundant miR-124-3p, which reduced ferroptosis of H/R-treated cells by inhibiting prostate six transmembrane epithelial antigen 3 (STEAP3), while overexpression of Steap3 reversed the effect of mir-124-3p. In addition, HM-exos from cell knocked out for miR-124-3p showed a weakened inhibitory effect on ferroptosis. Similarly, HM-exo treatment increased the content of miR-124-3p in grafts, while decreasing the level of STEAP3 and reducing the degree of hepatic ferroptosis.

Conclusion

Ferroptosis is involved in the IRI during LT with a severe steatotic donor liver. miR-124-3p in HM-exos downregulates Steap3 expression to inhibit ferroptosis, thereby attenuating graft IRI, which might be a promising strategy to treat IRI in steatotic grafts.

SUBMITTER: Wu L 

PROVIDER: S-EPMC9026664 | biostudies-literature | 2022 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

miR-124-3p delivered by exosomes from heme oxygenase-1 modified bone marrow mesenchymal stem cells inhibits ferroptosis to attenuate ischemia-reperfusion injury in steatotic grafts.

Wu Longlong L   Tian Xuan X   Zuo Huaiwen H   Zheng Weiping W   Li Xiang X   Yuan Mengshu M   Tian Xiaorong X   Song Hongli H  

Journal of nanobiotechnology 20220422 1


<h4>Background</h4>Steatotic livers tolerate ischemia-reperfusion injury (IRI) poorly, increasing the risk of organ dysfunction. Ferroptosis is considered the initiating factor of organ IRI. Heme oxygenase oxygen-1 (HO-1)-modified bone marrow mesenchymal stem cells (BMMSCs) (HO-1/BMMSCs) can reduce hepatic IRI; however, the role of ferroptosis in IRI of steatotic grafts and the effect of HO-1/BMMSCs-derived exosomes (HM-exos) on ferroptosis remain unknown.<h4>Methods</h4>A model of rat liver tra  ...[more]

Similar Datasets

| S-EPMC9203237 | biostudies-literature
| S-EPMC10570260 | biostudies-literature
| S-EPMC3012573 | biostudies-literature
| S-EPMC10329355 | biostudies-literature
| S-EPMC8832481 | biostudies-literature
| S-EPMC2956932 | biostudies-literature
| S-EPMC11413699 | biostudies-literature
| S-EPMC5428056 | biostudies-literature
| S-EPMC6568171 | biostudies-literature
| S-EPMC5884687 | biostudies-literature