Unknown

Dataset Information

0

A polygenic stacking classifier revealed the complicated platelet transcriptomic landscape of adult immune thrombocytopenia.


ABSTRACT: Immune thrombocytopenia (ITP) is an autoimmune disease with the typical symptom of a low platelet count in blood. ITP demonstrated age and sex biases in both occurrences and prognosis, and adult ITP was mainly induced by the living environments. The current diagnosis guideline lacks the integration of molecular heterogenicity. This study recruited the largest cohort of platelet transcriptome samples. A comprehensive procedure of feature selection, feature engineering, and stacking classification was carried out to detect the ITP biomarkers using RNA sequencing (RNA-seq) transcriptomes. The 40 detected biomarkers were loaded to train the final ITP detection model, with an overall accuracy 0.974. The biomarkers suggested that ITP onset may be associated with various transcribed components, including protein-coding genes, long intergenic non-coding RNA (lincRNA) genes, and pseudogenes with apparent transcriptions. The delivered ITP detection model may also be utilized as a complementary ITP diagnosis tool. The code and the example dataset is freely available on http://www.healthinformaticslab.org/supp/resources.php.

SUBMITTER: Xu C 

PROVIDER: S-EPMC9046129 | biostudies-literature | 2022 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

A polygenic stacking classifier revealed the complicated platelet transcriptomic landscape of adult immune thrombocytopenia.

Xu Chengfeng C   Zhang Ruochi R   Duan Meiyu M   Zhou Yongming Y   Bao Jizhang J   Lu Hao H   Wang Jie J   Hu Minghui M   Hu Zhaoyang Z   Zhou Fengfeng F   Zhu Wenwei W  

Molecular therapy. Nucleic acids 20220406


Immune thrombocytopenia (ITP) is an autoimmune disease with the typical symptom of a low platelet count in blood. ITP demonstrated age and sex biases in both occurrences and prognosis, and adult ITP was mainly induced by the living environments. The current diagnosis guideline lacks the integration of molecular heterogenicity. This study recruited the largest cohort of platelet transcriptome samples. A comprehensive procedure of feature selection, feature engineering, and stacking classification  ...[more]

Similar Datasets

| S-EPMC10907988 | biostudies-literature
| S-EPMC5564759 | biostudies-other
| S-EPMC7962106 | biostudies-literature
| S-EPMC8699996 | biostudies-literature
| S-EPMC7360729 | biostudies-literature
| S-EPMC5680376 | biostudies-literature
| S-EPMC8443112 | biostudies-literature
| S-EPMC8945643 | biostudies-literature
| S-EPMC10376085 | biostudies-literature
| S-EPMC10703010 | biostudies-literature