Unknown

Dataset Information

0

Early life sleep disruption alters glutamate and dendritic spines in prefrontal cortex and impairs cognitive flexibility in prairie voles.


ABSTRACT: Early life experiences are crucial for proper organization of excitatory synapses within the brain, with outsized effects on late-maturing, experience-dependent regions such as the medial prefrontal cortex (mPFC). Previous work in our lab showed that early life sleep disruption (ELSD) from postnatal days 14-21 in the highly social prairie vole results in long lasting impairments in social behavior. Here, we further hypothesized that ELSD alters glutamatergic synapses in mPFC, thereby affecting cognitive flexibility, an mPFC-dependent behavior. ELSD caused impaired cued fear extinction (indicating cognitive inflexibility), increased dendritic spine density, and decreased glutamate immunogold-labeling in vesicular glutamate transporter 1 (vGLUT1)-labeled presynaptic nerve terminals within mPFC. Our results have profound implications for neurodevelopmental disorders in humans such as autism spectrum disorder that also show poor sleep, impaired social behavior, cognitive inflexibility, as well as altered dendritic spine density and glutamate changes in mPFC, and imply that poor sleep may cause these changes.

SUBMITTER: Jones CE 

PROVIDER: S-EPMC9060254 | biostudies-literature | 2021

REPOSITORIES: biostudies-literature

altmetric image

Publications

Early life sleep disruption alters glutamate and dendritic spines in prefrontal cortex and impairs cognitive flexibility in prairie voles.

Jones Carolyn E CE   Chau Alex Q AQ   Olson Randall J RJ   Moore Cynthia C   Wickham Peyton T PT   Puranik Niyati N   Guizzetti Marina M   Cao Hung H   Meshul Charles K CK   Lim Miranda M MM  

Current research in neurobiology 20210710


Early life experiences are crucial for proper organization of excitatory synapses within the brain, with outsized effects on late-maturing, experience-dependent regions such as the medial prefrontal cortex (mPFC). Previous work in our lab showed that early life sleep disruption (ELSD) from postnatal days 14-21 in the highly social prairie vole results in long lasting impairments in social behavior. Here, we further hypothesized that ELSD alters glutamatergic synapses in mPFC, thereby affecting c  ...[more]

Similar Datasets

| S-EPMC10336370 | biostudies-literature
| S-EPMC3565461 | biostudies-literature
| S-EPMC6353622 | biostudies-literature
| S-EPMC6894606 | biostudies-literature
| S-EPMC8930613 | biostudies-literature
2023-08-07 | GSE174758 | GEO
| S-EPMC7007222 | biostudies-literature
| S-EPMC5487415 | biostudies-literature
| S-EPMC6946708 | biostudies-literature
| S-EPMC1242281 | biostudies-literature