Unknown

Dataset Information

0

Effect of nitrogen-doping configuration in graphene on the oxygen reduction reaction.


ABSTRACT: In this study, we investigate the oxygen reduction reaction (ORR) reactivity of nitrogen-doped graphene by using density functional theory (DFT), a computational quantum mechanical technique. Four doping configurations and five models were comprehensively studied: quaternary nitrogen (NQ), pyrrolic nitrogen (N5), two forms of pyridinic nitrogen (N6, N6nH) and three-pyridinic nitrogen (3N6). Models for possible sites during each step of ORR were set up and visualized to provide a platform to calculate the free energy of the reaction pathway to determine the suitability of each doping scenario. Associative mechanisms were displayed by all models except N5, which showed dissociative mechanism. The calculated free energy pathways demonstrate that the ranking of the reactivity for ORR by different nitrogen configurations from most reactive to least reactive is N6, NQ, N6nH, 3N6, and N5. Spin density and charge density aid in describing levels of reactivity.

SUBMITTER: Tai SH 

PROVIDER: S-EPMC9060867 | biostudies-literature | 2019 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Effect of nitrogen-doping configuration in graphene on the oxygen reduction reaction.

Tai Shih-Hsuan SH   Chang Bor Kae BK  

RSC advances 20190219 11


In this study, we investigate the oxygen reduction reaction (ORR) reactivity of nitrogen-doped graphene by using density functional theory (DFT), a computational quantum mechanical technique. Four doping configurations and five models were comprehensively studied: quaternary nitrogen (NQ), pyrrolic nitrogen (N5), two forms of pyridinic nitrogen (N6, N6nH) and three-pyridinic nitrogen (3N6). Models for possible sites during each step of ORR were set up and visualized to provide a platform to calc  ...[more]

Similar Datasets

| S-EPMC5951526 | biostudies-literature
| S-EPMC10063621 | biostudies-literature
| S-EPMC6648925 | biostudies-literature
| S-EPMC4441168 | biostudies-literature
| S-EPMC8749962 | biostudies-literature
| S-EPMC8270343 | biostudies-literature
| S-EPMC8538997 | biostudies-literature
| S-EPMC7381605 | biostudies-literature
| S-EPMC6647991 | biostudies-literature
| S-EPMC8437231 | biostudies-literature