Unknown

Dataset Information

0

Efficient conversion of ethanol to 1-butanol and C5-C9 alcohols over calcium carbide.


ABSTRACT: Production of 1-butanol or alcohols with 4-9 carbon atoms (C4-C9 alcohols) from widely available bio-ethanol has attracted much interest in recent years in academia and industry of renewable chemicals and liquid fuels. This work discloses for the first time that calcium carbide (CaC2) has a superior catalytic activity in condensation of ethanol to C4-C9 alcohols at 275-300 °C. The 1-butanol yield reached up to 24.5% with ethanol conversion of 62.4% at the optimized conditions. The by-products are mainly alcohols with 5-9 carbons besides 2-butanol, and the total yield of all the alcohols reached up to 56.3%. The reaction route was investigated through controlled experiments and quantitative analysis of the products. Results indicated that two reaction routes, aldol-condensation and self-condensation, took place simultaneously. The aldol-condensation route involves coupling of ethanol with acetaldehyde (formed from ethanol dehydrogenation) to form 2-butenol, which is subsequently hydrogenated to 1-butanol. The alkynyl moiety in CaC2 plays an important role in the catalytic pathways of both routes and affords the good activity of CaC2. CaC2 is converted to acetylene [C2H2] and calcium hydroxide [Ca(OH)2] simultaneously by the H2O that was generated from the condensation of alcohols.

SUBMITTER: Wang D 

PROVIDER: S-EPMC9065079 | biostudies-literature | 2019 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Efficient conversion of ethanol to 1-butanol and C<sub>5</sub>-C<sub>9</sub> alcohols over calcium carbide.

Wang Dong D   Liu Zhenyu Z   Liu Qingya Q  

RSC advances 20190617 33


Production of 1-butanol or alcohols with 4-9 carbon atoms (C<sub>4</sub>-C<sub>9</sub> alcohols) from widely available bio-ethanol has attracted much interest in recent years in academia and industry of renewable chemicals and liquid fuels. This work discloses for the first time that calcium carbide (CaC<sub>2</sub>) has a superior catalytic activity in condensation of ethanol to C<sub>4</sub>-C<sub>9</sub> alcohols at 275-300 °C. The 1-butanol yield reached up to 24.5% with ethanol conversion o  ...[more]

Similar Datasets

| S-EPMC8762640 | biostudies-literature
| S-EPMC9059853 | biostudies-literature
| S-EPMC6370804 | biostudies-literature
| S-EPMC7687105 | biostudies-literature
| S-EPMC10049020 | biostudies-literature
| S-EPMC11224241 | biostudies-literature
| S-EPMC2772450 | biostudies-literature
| S-EPMC8580005 | biostudies-literature
| S-EPMC9408137 | biostudies-literature
| S-EPMC6941981 | biostudies-literature