Unknown

Dataset Information

0

Integrated conversion of 1-butanol to 1,3-butadiene.


ABSTRACT: Renewed interest in production of 1,3-butadiene from non-petroleum sources has motivated research into novel production routes. In this study, we investigated an integrated process comprising 1-butanol dehydration over a γ-Al2O3 catalyst to produce a mixture of linear butenes, coupled with a downstream K-doped Cr2O3/Al2O3 catalyst to convert the butenes into butadiene. Linear butene yields greater than 90% are achievable at 360 °C in the dehydration step, and single-pass 1,3-butadiene yields greater than 40% are achieved from 1-butene in a N2 atmosphere in the dehydrogenation step. In the integrated process, 1,3-butadiene yields are 10-15%. In all cases, linear C4 selectivity is greater than 90%, suggesting that 1,3-butadiene yields could be significantly improved in a recycle reactor. Doping the Cr2O3 catalyst with different metals to promote H2 consumption in a CO2 atmosphere did not have a large effect on catalyst performance compared to an undoped Cr2O3 catalyst, although doping with K in an N2-diluted atmosphere and with Ni in a CO2-enriched atmosphere showed slight improvement. In contrast, doping with K and Ca in a CO2-enriched atmosphere showed slightly decreased performance. Similarly, employing a CO2-enriched atmosphere in general did not improve 1,3-butadiene yield or selectivity compared to reactions performed in N2. Overall, this study suggests that an integrated dehydration/dehydrogenation process to convert 1-butanol into 1,3-butadiene could be feasible with further catalyst and process development.

SUBMITTER: Kruger JS 

PROVIDER: S-EPMC9081732 | biostudies-literature | 2018 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Integrated conversion of 1-butanol to 1,3-butadiene.

Kruger Jacob S JS   Dong Tao T   Beckham Gregg T GT   Biddy Mary J MJ  

RSC advances 20180601 42


Renewed interest in production of 1,3-butadiene from non-petroleum sources has motivated research into novel production routes. In this study, we investigated an integrated process comprising 1-butanol dehydration over a γ-Al<sub>2</sub>O<sub>3</sub> catalyst to produce a mixture of linear butenes, coupled with a downstream K-doped Cr<sub>2</sub>O<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub> catalyst to convert the butenes into butadiene. Linear butene yields greater than 90% are achievable at 360 °C  ...[more]

Similar Datasets

| S-EPMC8046179 | biostudies-literature
| S-EPMC3052012 | biostudies-literature
| S-EPMC3009352 | biostudies-literature
| S-EPMC9086731 | biostudies-literature
| S-EPMC5076477 | biostudies-literature
| S-EPMC8857861 | biostudies-literature
| S-EPMC5098428 | biostudies-literature
| S-EPMC6418745 | biostudies-literature
| S-EPMC4220266 | biostudies-literature
| S-EPMC9036356 | biostudies-literature