Facile and Green Synthesis of Highly Fluorescent Carbon Quantum Dots from Water Hyacinth for the Detection of Ferric Iron and Cellular Imaging.
Ontology highlight
ABSTRACT: Natural biomass is used for facile synthesis of carbon quantum dots (CQDs) with high fluorescence, owing to its abundance, low cost, and eco-friendliness. In this study, a bottom-up hydrothermal method was used to prepare CQDs from water hyacinth (wh) at a constant temperature of 180 °C for 12 h. The synthesized wh-CQDs had uniform size, amorphous graphite structure, high water solubility (containing multiple hydroxyl and carboxyl groups on the surface), excitation light-dependent characteristics, and high photostability. The results showed that the aqueous solution of CQDs could detect Fe3+ rapidly, sensitively, and highly selectively with a detection limit of 0.084 μM in the linear range of 0-330 μM, which is much lower than the detection limit of 0.77 μM specified by the World Health Organization. More importantly, because the wh-CQDs were synthesized without any additives, they exhibited low toxicity to Klebsiella sp. cells even at high concentrations. Moreover, wh-CQDs emitted bright blue fluorescence in Klebsiella sp. cells, indicating its strong penetrating ability. Correspondingly, the fluorescent cell sorting results also revealed that the proportion of cell internalization reached 41.78%. In this study, wh-CQDs derived from natural biomass were used as high-performance fluorescent probes for Fe3+ detection and Klebsiella sp. imaging. This study is expected to have great significance for the application of biomass carbon spots in the field of cellular imaging and biology.
SUBMITTER: Zhao P
PROVIDER: S-EPMC9100092 | biostudies-literature | 2022 May
REPOSITORIES: biostudies-literature
ACCESS DATA