Unknown

Dataset Information

0

Dual-Grafting of Microcrystalline Cellulose by Tea Polyphenols and Cationic ε-Polylysine to Tailor a Structured Antimicrobial Soy-Based Emulsion for 3D Printing.


ABSTRACT: An imperative processing way to produce 3D printed structures with enhanced multifunctional properties is printing inks in the form of a gel-like colloidal emulsion. The surface-modified microcrystalline cellulose (MCC) is an excipient of outstanding merit as a particulate emulsifier to manufacture a stable Pickering emulsion gel. The tuning of the MCC structure by cationic antimicrobial compounds, such as ε-polylysine (ε-PL), can offer a surface activity with an antimicrobial effect. However, the MCC/ε-PL lacks the appropriate emulsifying ability due to the development of electrostatic complexes. To overcome this challenge, (i) a surface-active MCC conjugate was synthesized by a sustainable dual-grafting technique (ii) to produce a highly stable therapeutic soy-based Pickering emulsion gel (iii) for potential application in 3D printing. In this regard, the tea polyphenols were initially introduced into MCC by the free-radical grafting method to decrease the charge density of anionic MCC. Then, the antioxidative MCC-g-tea polyphenols were reacted by ε-PL to produce a dual-grafted therapeutic MCC conjugate (micro-biosurfactant), stabilizing the soy-based emulsion system. The results indicated that the dual-grafted micro-biosurfactant formed a viscoelastic and thixotropic soy-based emulsion gel with reduced droplet size and long-term stability. Besides, there was an improvement in the interfacial adsorption features of soy-protein particles after micro-biosurfactant incorporation, where the interfacial pressure and surface dilatational viscoelastic moduli were enhanced. Consequently, it was revealed that the therapeutic Pickering emulsion gel was more suitable to manufacture a well-defined 3D architecture with high resolution and retained permanent deformation after unloading (i.e., a recoverable matrix). This work established that the modification of the MCC backbone by tea polyphenols and ε-PL advances its bioactive properties and emulsifying performance, which finally obtains a soy-based 3D printed structure with noteworthy mechanical strength.

SUBMITTER: Shahbazi M 

PROVIDER: S-EPMC9100494 | biostudies-literature | 2022 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Dual-Grafting of Microcrystalline Cellulose by Tea Polyphenols and Cationic ε-Polylysine to Tailor a Structured Antimicrobial Soy-Based Emulsion for 3D Printing.

Shahbazi Mahdiyar M   Jäger Henry H   Ettelaie Rammile R  

ACS applied materials & interfaces 20220427 18


An imperative processing way to produce 3D printed structures with enhanced multifunctional properties is printing inks in the form of a gel-like colloidal emulsion. The surface-modified microcrystalline cellulose (MCC) is an excipient of outstanding merit as a particulate emulsifier to manufacture a stable Pickering emulsion gel. The tuning of the MCC structure by cationic antimicrobial compounds, such as ε-polylysine (ε-PL), can offer a surface activity with an antimicrobial effect. However, t  ...[more]

Similar Datasets

| S-EPMC8880380 | biostudies-literature
| S-EPMC8579399 | biostudies-literature
| S-EPMC6550245 | biostudies-literature
| S-EPMC9097516 | biostudies-literature
2019-11-14 | GSE140300 | GEO
| S-EPMC8363252 | biostudies-literature
| S-EPMC10935660 | biostudies-literature
| S-EPMC11804737 | biostudies-literature
| S-EPMC11907285 | biostudies-literature
| S-EPMC10899680 | biostudies-literature