Unknown

Dataset Information

0

Defining the Skeletal Myogenic Lineage in Human Pluripotent Stem Cell-Derived Teratomas.


ABSTRACT: Skeletal muscle stem cells are essential to muscle homeostasis and regeneration after injury, and have emerged as a promising cell source for treating skeletal disorders. An attractive approach to obtain these cells utilizes differentiation of pluripotent stem cells (PSCs). We recently reported that teratomas derived from mouse PSCs are a rich source of skeletal muscle stem cells. Here, we showed that teratoma formation is also capable of producing skeletal myogenic progenitors from human PSCs. Using single-cell transcriptomics, we discovered several distinct skeletal myogenic subpopulations that represent progressive developmental stages of the skeletal myogenic lineage and recapitulate human embryonic skeletal myogenesis. We further discovered that ERBB3 and CD82 are effective surface markers for prospective isolation of the skeletal myogenic lineage in human PSC-derived teratomas. Therefore, teratoma formation provides an accessible model for obtaining human skeletal myogenic progenitors from PSCs.

SUBMITTER: Pappas MP 

PROVIDER: S-EPMC9102156 | biostudies-literature | 2022 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Defining the Skeletal Myogenic Lineage in Human Pluripotent Stem Cell-Derived Teratomas.

Pappas Matthew P MP   Xie Ning N   Penaloza Jacqueline S JS   Chan Sunny S K SSK  

Cells 20220509 9


Skeletal muscle stem cells are essential to muscle homeostasis and regeneration after injury, and have emerged as a promising cell source for treating skeletal disorders. An attractive approach to obtain these cells utilizes differentiation of pluripotent stem cells (PSCs). We recently reported that teratomas derived from mouse PSCs are a rich source of skeletal muscle stem cells. Here, we showed that teratoma formation is also capable of producing skeletal myogenic progenitors from human PSCs.  ...[more]

Similar Datasets

2022-05-18 | GSE189985 | GEO
| PRJNA785485 | ENA
| S-EPMC8693664 | biostudies-literature
| S-EPMC5568072 | biostudies-literature
| S-EPMC4750097 | biostudies-literature
| S-EPMC6287935 | biostudies-literature
| S-EPMC8514853 | biostudies-literature
| S-EPMC9687588 | biostudies-literature
| S-EPMC10137227 | biostudies-literature
| S-EPMC6854018 | biostudies-literature