Unknown

Dataset Information

0

Reporting guidelines for human microbiome research: the STORMS checklist.


ABSTRACT: The particularly interdisciplinary nature of human microbiome research makes the organization and reporting of results spanning epidemiology, biology, bioinformatics, translational medicine and statistics a challenge. Commonly used reporting guidelines for observational or genetic epidemiology studies lack key features specific to microbiome studies. Therefore, a multidisciplinary group of microbiome epidemiology researchers adapted guidelines for observational and genetic studies to culture-independent human microbiome studies, and also developed new reporting elements for laboratory, bioinformatics and statistical analyses tailored to microbiome studies. The resulting tool, called 'Strengthening The Organization and Reporting of Microbiome Studies' (STORMS), is composed of a 17-item checklist organized into six sections that correspond to the typical sections of a scientific publication, presented as an editable table for inclusion in supplementary materials. The STORMS checklist provides guidance for concise and complete reporting of microbiome studies that will facilitate manuscript preparation, peer review, and reader comprehension of publications and comparative analysis of published results.

SUBMITTER: Mirzayi C 

PROVIDER: S-EPMC9105086 | biostudies-literature | 2021 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Reporting guidelines for human microbiome research: the STORMS checklist.

Mirzayi Chloe C   Renson Audrey A   Zohra Fatima F   Elsafoury Shaimaa S   Geistlinger Ludwig L   Kasselman Lora J LJ   Eckenrode Kelly K   van de Wijgert Janneke J   Loughman Amy A   Marques Francine Z FZ   MacIntyre David A DA   Arumugam Manimozhiyan M   Azhar Rimsha R   Beghini Francesco F   Bergstrom Kirk K   Bhatt Ami A   Bisanz Jordan E JE   Braun Jonathan J   Bravo Hector Corrada HC   Buck Gregory A GA   Bushman Frederic F   Casero David D   Clarke Gerard G   Collado Maria Carmen MC   Cotter Paul D PD   Cryan John F JF   Demmer Ryan T RT   Devkota Suzanne S   Elinav Eran E   Escobar Juan S JS   Fettweis Jennifer J   Finn Robert D RD   Fodor Anthony A AA   Forslund Sofia S   Franke Andre A   Furlanello Cesare C   Gilbert Jack J   Grice Elizabeth E   Haibe-Kains Benjamin B   Handley Scott S   Herd Pamela P   Holmes Susan S   Jacobs Jonathan P JP   Karstens Lisa L   Knight Rob R   Knights Dan D   Koren Omry O   Kwon Douglas S DS   Langille Morgan M   Lindsay Brianna B   McGovern Dermot D   McHardy Alice C AC   McWeeney Shannon S   Mueller Noel T NT   Nezi Luigi L   Olm Matthew M   Palm Noah N   Pasolli Edoardo E   Raes Jeroen J   Redinbo Matthew R MR   Rühlemann Malte M   Balfour Sartor R R   Schloss Patrick D PD   Schriml Lynn L   Segal Eran E   Shardell Michelle M   Sharpton Thomas T   Smirnova Ekaterina E   Sokol Harry H   Sonnenburg Justin L JL   Srinivasan Sujatha S   Thingholm Louise B LB   Turnbaugh Peter J PJ   Upadhyay Vaibhav V   Walls Ramona L RL   Wilmes Paul P   Yamada Takuji T   Zeller Georg G   Zhang Mingyu M   Zhao Ni N   Zhao Liping L   Bao Wenjun W   Culhane Aedin A   Devanarayan Viswanath V   Dopazo Joaquin J   Fan Xiaohui X   Fischer Matthias M   Jones Wendell W   Kusko Rebecca R   Mason Christopher E CE   Mercer Tim R TR   Sansone Susanna-Assunta SA   Scherer Andreas A   Shi Leming L   Thakkar Shraddha S   Tong Weida W   Wolfinger Russ R   Hunter Christopher C   Segata Nicola N   Huttenhower Curtis C   Dowd Jennifer B JB   Jones Heidi E HE   Waldron Levi L  

Nature medicine 20211117 11


The particularly interdisciplinary nature of human microbiome research makes the organization and reporting of results spanning epidemiology, biology, bioinformatics, translational medicine and statistics a challenge. Commonly used reporting guidelines for observational or genetic epidemiology studies lack key features specific to microbiome studies. Therefore, a multidisciplinary group of microbiome epidemiology researchers adapted guidelines for observational and genetic studies to culture-ind  ...[more]

Similar Datasets

| S-EPMC5224740 | biostudies-literature
| S-EPMC5118873 | biostudies-literature
| S-EPMC7798200 | biostudies-literature
| S-EPMC6924717 | biostudies-literature
| S-EPMC8350680 | biostudies-literature
| S-EPMC6206632 | biostudies-literature
| S-EPMC7610926 | biostudies-literature
| S-EPMC7359286 | biostudies-literature
| S-EPMC7360023 | biostudies-literature
| S-EPMC7393194 | biostudies-literature