Project description:BackgroundThe optimal treatment for metastatic high-grade gastroenteropancreatic (GEP) neuroendocrine neoplasms when Ki-67 ≤55% is unknown. A prospective multi-centre phase 2 study was performed to evaluate the efficacy and safety of everolimus and temozolomide as first-line treatment for these patients.MethodsPatients received everolimus 10 mg daily continuously and temozolomide 150 mg/m2 for 7 days every 2 weeks. Endpoints included response, survival, safety and quality of life (QoL). Histopathological re-evaluation according to the 2019 WHO classification was performed.ResultsFor 37 eligible patients, the primary endpoint with 65% disease control rate (DCR) at 6 months (m) was reached. The response rate was 30%, the median progression-free survival (PFS) 10.2 months and the median overall survival (OS) 26.4 months. Considering 26 NET G3 patients, 6 months DCR was 77% vs. 22% among nine NEC patients (p = 0.006). PFS was superior for NET G3 vs. NEC (12.6 months vs. 3.4 months, Log-rank-test: p = 0.133, Breslow-test: p < 0.001). OS was significantly better for NET G3 (31.4 months vs. 7.8 months, p = 0.003). Grade 3 and 4 toxicities were reported in 43% and 38%. QoL remained stable during treatment.ConclusionEverolimus and temozolomide may be a treatment option for selected GEP-NET G3 patients including careful monitoring. Toxicity did not compromise QoL.Clinical trial registrationClinicalTrials.gov (NTC02248012).
Project description:IntroductionThe role of chemotherapy alone in newly diagnosed WHO grade 2 oligodendroglioma after biopsy, incomplete or gross total resection remains controversial. We here analyze the clinical outcome of four patient cohorts being treated with either procarbazine, CCNU and vincristine (PCV) or temozolomide (TMZ) after biopsy, resection only, or wait-and-scan after biopsy.MethodsPatients (n = 142) with molecularly defined oligodendroglioma (WHO 2016) were assigned to four cohorts: W&S, wait-and-scan after stereotactic biopsy (n = 59); RES, surgical resection only (n = 27); TMZ, temozolomide after biopsy (n = 26) or PCV (n = 30) after biopsy. Presurgical MRI T2 tumor volumes were obtained by manual segmentation. Progression-free survival (PFS), post-recurrence PFS (PR-PFS) and rate of histological progression to grade 3 were analyzed.ResultsPFS was longest after PCV (9.1 years), compared to 5.1 years after W&S, 4.4 years after RES and 3.6 years after TMZ. The rate of histological progression from grade 2 to 3 within 10 years was 9% for the PCV, 29% for the W&S, 67% for the RES and 75% for the TMZ group (p = 0.01). In the W&S group, patients treated with PCV at first relapse had a longer PFS from intervention than those treated with TMZ (7.2 vs 4.0 years, p = 0.04). Multivariate analysis identified smaller tumor volume prior to any intervention (p = 0.02) to be prognostic for PFS.ConclusionsPCV chemotherapy alone is an effective treatment for WHO grade 2 oligodendroglioma, with long PFS and low rate of histological progression.
Project description:BackgroundSorafenib (Sb) is a multiple kinase inhibitor targeting both tumour cell proliferation and angiogenesis that may further act as a potent radiosensitizer by arresting cells in the most radiosensitive cell cycle phase. This phase I open-label, noncontrolled dose escalation study was performed to determine the safety and maximum tolerated dose (MTD) of Sb in combination with radiation therapy (RT) and temozolomide (TMZ) in 17 patients with newly diagnosed high-grade glioma.MethodsPatients were treated with RT (60 Gy in 2 Gy fractions) combined with TMZ 75 mg m(-2) daily, and Sb administered at three dose levels (200 mg daily, 200 mg BID, and 400 mg BID) starting on day 8 of RT. Thirty days after the end of RT, patients received monthly TMZ (150-200 mg m(-2) D1-5/28) and Sb (400 mg BID). Pharmacokinetic (PK) analyses were performed on day 8 (TMZ) and on day 21 (TMZ&Sb) (Clinicaltrials ID: NCT00884416).ResultsThe MTD of Sb was established at 200 mg BID. Dose-limiting toxicities included thrombocytopenia (two patients), diarrhoea (one patient) and hypercholesterolaemia (one patient). Sb administration did not affect the mean area under the curve(0-24) and mean Cmax of TMZ and its metabolite 5-amino-imidazole-4-carboxamide (AIC). Tmax of both TMZ and AIC was delayed from 0.75 (TMZ alone) to 1.5 h (combined TMZ/Sb). The median progression-free survival was 7.9 months (95% confidence interval (CI): 5.4-14.55), and the median overall survival was 17.8 months (95% CI: 14.7-25.6).ConclusionsAlthough Sb can be combined with RT and TMZ, significant side effects and moderate outcome results do not support further clinical development in malignant gliomas. The robust PK data of the TMZ/Sb combination could be useful in other cancer settings.
Project description:Low-grade gliomas (LGG) encompass a heterogeneous group of tumors that are clinically, histologically and molecularly diverse. Treatment decisions for patients with LGG are directed toward improving upon the natural history while limiting treatment-associated toxiceffects. Recent evidence has documented a utility for adjuvant chemotherapy with procarbazine, CCNU (lomustine), and vincristine (PCV) or temozolomide (TMZ). We sought to determine the comparative utility of PCV and TMZ for patients with LGG, particularly in context of molecular subtype. A literature search of PubMed was conducted to identify studies reporting patient response to PCV, TMZ, or a combination of chemotherapy and radiation therapy (RT). Eligibility criteria included patients 16 years of age and older, notation of LGG subtype, and report of progression-free survival (PFS), overall survival (OS), and treatment course. Level I, II, and III data were included. Adjuvant therapy with PCV resulted in prolonged PFS and OS in patients with newly diagnosed high-risk LGG. This benefit was accrued most significantly by patients with tumors harboring 1p/19q codeletion and IDH1 mutation. Adjuvant therapy with temozolomide was associated with lower toxicity than therapy with PCV. In patients with LGG with an unfavorable natural history, such as with intact 1p/19q and wild-type IDH1, RT/TMZ plus adjuvant TMZ may be the best option. Patients with biologically favorable high-risk LGG are likely to derive the most benefit from RT and adjuvant PCV.
Project description:Oligodendrogliomas represent the third most common type of glioma, comprising 4%-15% of all gliomas and can be classified by degree of malignancy into grade II and grade III, according to WHO classification. Only 30% of oligodendroglial tumors have anaplastic characteristics. Anaplastic oligodendroglioma (AO) is often localized as a single lesion in the white matter and in the cortex, rarely in brainstem or spinal cord. The management of AO is deeply changed in the recent years. Maximal safe surgical resection followed by radiotherapy (RT) was considered as the standard of care since paramount findings regarding molecular aspects, in particular co-deletion of the short arm of chromosome 1 and the long arm of chromosome 19, revealed that these subsets of AO, benefit in terms of overall survival (OS) and progression-free survival (PFS), from the addition of chemotherapy to RT. Allelic losses of chromosomes 1p and 19q occur in 50%-70% of both low-grade and anaplastic tumors, representing a strong prognostic factor and a powerful predictor of prolonged survival. Several other molecular markers have potential clinical significance as IDH1 mutations, confirming the strong prognostic role for OS. Malignant brain tumors negatively impacts on patients' quality of life. Seizures, visual impairment, headache, and cognitive disorders can be present. Moreover, chemotherapy and RT have important side effects. For these reasons, "health-related quality of life" is becoming a topic of growing interest, investigating on physical, mental, emotional, and social well-being. Understanding the impact of medical treatment on health-related quality of life will probably have a growing effect both on health care strategies and on patients.
Project description:BackgroundThe optimal chemotherapy regimen between temozolomide and procarbazine, lomustine, and vincristine (PCV) remains uncertain for WHO grade 3 oligodendroglioma (Olig3) patients. We therefore investigated this question using national data.MethodsPatients diagnosed with radiotherapy-treated 1p/19q-codeleted Olig3 between 2010 and 2018 were identified from the National Cancer Database. The overall survival (OS) associated with first-line single-agent temozolomide vs multi-agent PCV was estimated by Kaplan-Meier techniques and evaluated by multivariable Cox regression.ResultsOne thousand five hundred ninety-six radiotherapy-treated 1p/19q-codeleted Olig3 patients were identified: 88.6% (n = 1414) treated with temozolomide and 11.4% (n = 182) with PCV (from 5.4% in 2010 to 12.0% in 2018) in the first-line setting. The median follow-up was 35.5 months (interquartile range [IQR] 20.7-60.6 months) with 63.3% of patients alive at the time of analysis. There was a significant difference in unadjusted OS between temozolomide (5-year OS 58.9%, 95%CI: 55.6-62.0) and PCV (5-year OS 65.1%, 95%CI: 54.8-73.5; P = .04). However, a significant OS difference between temozolomide and PCV was not observed in the Cox regression analysis adjusted by age and extent of resection (PCV vs temozolomide HR 0.81, 95%CI: 0.59-1.11, P = .18). PCV was more frequently used for younger Olig3s but otherwise was not associated with patient's insurance status or care setting.ConclusionsIn a national analysis of Olig3s, first-line PCV chemotherapy was associated with a slightly improved unadjusted short-term OS compared to temozolomide; but not following adjustment by patient age and extent of resection. There has been an increase in PCV utilization since 2010. These findings provide preliminary data while we await the definitive results from the CODEL trial.
Project description:BackgroundIn experimental models, bevacizumab suppressed in vitro growth and in vivo hepatic metastasis of ocular melanoma cells. Additional preclinical data suggested a potential benefit when combining bevacizumab with dacarbazine.MethodsThis noncomparative phase II study evaluated a combination of bevacizumab (10 mg/kg on days 8 and 22) with temozolomide (150 mg/m(2) on days 1-7 and 15-21) in 36 patients with metastatic uveal melanoma (MUM). The primary endpoint was the progression-free rate (PFR) at 6 months. Using a modified 2-step Fleming plan, at least 10 of 35 patients were required to support a predefined PFR at 6 months of 40%. Secondary objectives were progression-free survival (PFS), overall survival (OS), and safety; liver perfusion computed tomography (CT) for response imaging; and impact of VEGF-A gene polymorphisms on bevacizumab pharmacodynamics.ResultsFirst- and second-step analyses revealed nonprogression at 6 months in 3 of 17 and 8 of 35 patients, respectively. Finally, the 6-month PFR was 23% (95% confidence interval [CI]: 10-39), with long-lasting stable disease in 5 patients (14%). Median PFS and OS were 12 weeks and 10 months, respectively. No unexpected toxicity occurred. Liver perfusion CT imaging was not useful in assessing tumor response, and VEGF-A gene polymorphisms were not correlated with toxicity or survival.ConclusionIn patients with MUM, a combination of bevacizumab plus temozolomide achieved a 6-month PFR of 23%.
Project description:Objectives: To investigate the ability of radiomics features from MRI in differentiating anaplastic oligodendroglioma (AO) from atypical low-grade oligodendroglioma using machine-learning algorithms. Methods: A total number of 101 qualified patients (50 participants with AO and 51 with atypical low-grade oligodendroglioma) were enrolled in this retrospective, single-center study. Forty radiomics features of tumor images derived from six matrices were extracted from contrast-enhanced T1-weighted (T1C) images and fluid-attenuation inversion recovery (FLAIR) images. Three selection methods were performed to select the optimal features for classifiers, including distance correlation, least absolute shrinkage and selection operator (LASSO), and gradient boosting decision tree (GBDT). Then three machine-learning classifiers were adopted to generate discriminative models, including linear discriminant analysis, support vector machine, and random forest (RF). Receiver operating characteristic analysis was conducted to evaluate the discriminative performance of each model. Results: Nine predictive models were established based on radiomics features from T1C images and FLAIR images. All of the classifiers represented feasible ability in differentiation, with AUC more than 0.840 when combined with suitable selection method. For models based on T1C images, the combination of LASSO and RF classifier represented the highest AUC of 0.904 in the validation group. For models based on FLAIR images, the combination of GBDT and RF classifier showed the highest AUC of 0.861 in the validation group. Conclusion: Radiomics-based machine-learning approach could potentially serve as a feasible method in distinguishing AO from atypical low-grade oligodendroglioma.
Project description:Assessment of low-grade glioma treatment response remains as much of a challenge as the treatment itself. Proton magnetic resonance spectroscopy ((1)H-MRS) and imaging were incorporated into a study of patients receiving temozolomide therapy for low-grade glioma in order to evaluate and monitor tumour metabolite and volume changes during treatment. Patients (n=12) received oral temozolomide (200 mg m(-2) day(-1)) over 5 days on a 28-day cycle for 12 cycles. Response assessment included baseline and three-monthly magnetic resonance imaging studies (pretreatment, 3, 6, 9 and 12 months) assessing the tumour size. Short (TE (echo time)=20 ms) and long (TE=135 ms) echo time single voxel spectroscopy was performed in parallel to determine metabolite profiles. The mean tumour volume change at the end of treatment was -33% (s.d.=20). The dominant metabolite in long echo time spectra was choline. At 12 months, a significant reduction in the mean choline signal was observed compared with the pretreatment (P=0.035) and 3-month scan (P=0.021). The reduction in the tumour choline/water signal paralleled tumour volume change and may reflect the therapeutic effect of temozolomide.
Project description:Purpose of reviewEpithelial ovarian cancer is a disease that encompasses a number of histologically and molecularly distinct entities; the most prevalent subtype being high-grade serous (HGS) carcinoma. Standard first-line treatment of advanced HGS carcinoma includes cytoreductive surgery plus intravenous paclitaxel/platinum-based chemotherapy. Despite excellent responses to initial treatment, the majority of patients develop recurrent disease within 3 years. The introduction of the vascular endothelial growth factor (VEGF) inhibitor, bevacizumab, and poly(ADP-ribose) polymerase (PARP) inhibitors into first-line management has changed the outlook for this lethal disease. In this review, we summarise the most recent clinical trials that determine current primary therapy of advanced HGS carcinoma and the ongoing trials that aim to change management in the future.Recent findingsRecent phase III clinical trials have shown that delayed primary surgery after completing neo-adjuvant chemotherapy is non-inferior to immediate primary surgery, but could provide a survival benefit in FIGO (International Federation of Gynecology and Obstetrics) stage IV disease. The use of weekly intravenous chemotherapy regimens has not been proven to be more effective than standard 3-weekly regimens in Western patient populations, and the use of intraperitoneal chemotherapy remains controversial in the first-line setting. In contrast, newer systemic anti-cancer therapies targeting angiogenesis and/or HR-deficient tumours have been successfully incorporated into front-line therapeutic regimens to treat HGS carcinoma. Recent results from randomised trials investigating the use of PARP inhibitors as monotherapy and in combination with the anti-angiogenic agent, bevacizumab, have demonstrated highly impressive efficacy when combined with traditional first-line multi-modality therapy. Management of HGS carcinoma is evolving, but further work is still required to optimise and integrate tumour and plasma biomarkers to exploit the potential of these highly efficacious targeted agents.