Unknown

Dataset Information

0

Small-molecule fulvic acid with strong hydration ability for non-vitreous cellular cryopreservation.


ABSTRACT: The exploitation of biocompatible ice-control materials especially the small molecules for non-vitreous cryopreservation remains challenging. Here, we report a small molecule of fulvic acid (FA) with strong hydration ability, which enables non-vitreous cellular cryopreservation by reducing ice growth during freezing and reducing ice recrystallization/promoting ice melting during thawing. Without adding any other cryoprotectants, FA can enhance the recovery of sheep red blood cells (RBCs) by three times as compared with a commercial cryoprotectant (hydroxyethyl starch) under a stringent test condition. Investigation of water mobility reveals that the ice-control properties of FA can be ascribed to its strong bondage to water molecules. Furthermore, we found that FA can be absorbed by RBCs and mainly locates on membranes, suggesting the possible contribution of FA to cell protection through stabilizing membranes. This work bespeaks a bright future for small-molecule cryoprotectants in non-vitreous cryopreservation application.

SUBMITTER: Bai G 

PROVIDER: S-EPMC9157229 | biostudies-literature | 2022 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Small-molecule fulvic acid with strong hydration ability for non-vitreous cellular cryopreservation.

Bai Guoying G   Hu Jinhao J   Qin Sijia S   Qi Zipeng Z   Zhuang Hening H   Sun Fude F   Lu Youhua Y   Jin Shenglin S   Gao Dong D   Wang Jianjun J  

iScience 20220518 6


The exploitation of biocompatible ice-control materials especially the small molecules for non-vitreous cryopreservation remains challenging. Here, we report a small molecule of fulvic acid (FA) with strong hydration ability, which enables non-vitreous cellular cryopreservation by reducing ice growth during freezing and reducing ice recrystallization/promoting ice melting during thawing. Without adding any other cryoprotectants, FA can enhance the recovery of sheep red blood cells (RBCs) by thre  ...[more]

Similar Datasets

| S-EPMC9049418 | biostudies-literature
| S-EPMC3142295 | biostudies-literature
| S-EPMC8157578 | biostudies-literature
| S-EPMC3876275 | biostudies-literature
| S-EPMC7758121 | biostudies-literature
| S-EPMC4245162 | biostudies-literature
| S-EPMC1949043 | biostudies-literature
| S-EPMC4918798 | biostudies-literature
| S-EPMC4866739 | biostudies-literature
| S-EPMC2701304 | biostudies-literature