Unknown

Dataset Information

0

VitalDB, a high-fidelity multi-parameter vital signs database in surgical patients.


ABSTRACT: In modern anesthesia, multiple medical devices are used simultaneously to comprehensively monitor real-time vital signs to optimize patient care and improve surgical outcomes. However, interpreting the dynamic changes of time-series biosignals and their correlations is a difficult task even for experienced anesthesiologists. Recent advanced machine learning technologies have shown promising results in biosignal analysis, however, research and development in this area is relatively slow due to the lack of biosignal datasets for machine learning. The VitalDB (Vital Signs DataBase) is an open dataset created specifically to facilitate machine learning studies related to monitoring vital signs in surgical patients. This dataset contains high-resolution multi-parameter data from 6,388 cases, including 486,451 waveform and numeric data tracks of 196 intraoperative monitoring parameters, 73 perioperative clinical parameters, and 34 time-series laboratory result parameters. All data is stored in the public cloud after anonymization. The dataset can be freely accessed and analysed using application programming interfaces and Python library. The VitalDB public dataset is expected to be a valuable resource for biosignal research and development.

SUBMITTER: Lee HC 

PROVIDER: S-EPMC9178032 | biostudies-literature | 2022 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

VitalDB, a high-fidelity multi-parameter vital signs database in surgical patients.

Lee Hyung-Chul HC   Park Yoonsang Y   Yoon Soo Bin SB   Yang Seong Mi SM   Park Dongnyeok D   Jung Chul-Woo CW  

Scientific data 20220608 1


In modern anesthesia, multiple medical devices are used simultaneously to comprehensively monitor real-time vital signs to optimize patient care and improve surgical outcomes. However, interpreting the dynamic changes of time-series biosignals and their correlations is a difficult task even for experienced anesthesiologists. Recent advanced machine learning technologies have shown promising results in biosignal analysis, however, research and development in this area is relatively slow due to th  ...[more]

Similar Datasets

| S-EPMC8976258 | biostudies-literature
| S-EPMC5081381 | biostudies-literature
| S-EPMC7893648 | biostudies-literature
| S-EPMC7481128 | biostudies-literature
| S-EPMC11015492 | biostudies-literature
| S-EPMC9314636 | biostudies-literature
| S-EPMC11859041 | biostudies-literature
| S-EPMC7310949 | biostudies-literature
| S-EPMC5303322 | biostudies-literature
| S-EPMC5576624 | biostudies-literature