Ontology highlight
ABSTRACT: Background
Balanced reciprocal translocation is one of the most common chromosomal abnormalities in humans that may lead to infertility, recurrent pregnancy loss, or having children with physical or mental abnormalities. Karyotyping and FISH are traditional detection approaches with a low resolution. Bionano optical genome mapping (OGM) developed in recent years can be used to analyze chromosomal abnormalities at a higher resolution, providing the possibility of more in-depth analyses of balanced chromosome translocations.Methods
To evaluate the feasibility of OGM to detect chromosome balanced translocations, 10 genetic outpatients were collected and detected simultaneously by karyotype analysis, FISH, CNV-seq, and Bionano OGM in this study.Results
The results showed that the karyotypes of the patients were detected by karyotype analysis, FISH, and Bionano OGM, but one patient with karyotype t(Y,19) was not correctly detected by OGM. There were not find any chromosome abnormality by CNV-seq. More importantly, OGM allowed the location of the mutation to the gene level, which is important for aiding diagnoses, compared to karyotype analysis, and FISH.Conclusions
This study shows that OGM can be a high adjunctive diagnostic method for detecting balanced chromosome translocations, but the accuracy and precision of OGM detecting mutations need to be gradually improved in telomere and centromere regions.
SUBMITTER: Dai P
PROVIDER: S-EPMC9184658 | biostudies-literature | 2022 Jun
REPOSITORIES: biostudies-literature
Dai Peng P Zhu Xiaofan X Pei Yanzheng Y Chen Peng P Li Jingjing J Gao Zhi Z Liang Yu Y Kong Xiangdong X
Molecular genetics & genomic medicine 20220406 6
<h4>Background</h4>Balanced reciprocal translocation is one of the most common chromosomal abnormalities in humans that may lead to infertility, recurrent pregnancy loss, or having children with physical or mental abnormalities. Karyotyping and FISH are traditional detection approaches with a low resolution. Bionano optical genome mapping (OGM) developed in recent years can be used to analyze chromosomal abnormalities at a higher resolution, providing the possibility of more in-depth analyses of ...[more]