Synergy effect of CuO on CuCo2O4 for methane catalytic combustion† † Electronic supplementary information (ESI) available. See https://doi.org/10.1039/d2ra02237k
Ontology highlight
ABSTRACT: Spinel oxides (AB2O4) have been widely studied as catalysts for methane combustion. Increasing attention was focused on the catalysis properties of the [B2O3] octahedron; however, the role of the [AO] tetrahedron in the catalytic activity was seldom discussed. Herein, a series of (CuO)x–CuCo2O4 (x = 0, 0.1, 0.2) composite oxides were synthesized by a solvothermal method. The structure, morphology, and physicochemical properties of the as-synthesized samples were characterized by the XRD, SEM, BET, and XPS techniques. The results of the catalytic activity tests showed that the coexistence of CuO with CuCo2O4 can improve the catalytic activity. The XPS results demonstrated that there were remarkable Cu+ ions present in the composite oxides, which can cause increases in the number of oxygen vacancies on the surface of the catalysts. In addition, the redox of Cu+ and Cu2+ may improve the oxygen exchange capacity for methane oxidation. CuO and CuCo2O4 exhibit a synergistic effect in catalyzing methane combustion, which increases the oxidation rate of methane on the surface of (CuO)0.2–CuCo2O4 composite oxide and decreasing the methane combustion temperature.
SUBMITTER: Shao X
PROVIDER: S-EPMC9194921 | biostudies-literature | 2022 Jun
REPOSITORIES: biostudies-literature
ACCESS DATA