Project description:BackgroundWhereas human leukocyte antigen (HLA) class I mutation-associated neoantigen burden has been linked with response to immune checkpoint blockade (ICB), the role of HLA class II-restricted neoantigens in clinical responses to ICB is less studied. We used computational approaches to assess HLA class II immunogenic mutation (IMM) burden in patients with melanoma and lung cancer treated with ICB.Patients and methodsWe analyzed whole-exome sequence data from four cohorts of ICB-treated patients with melanoma (n = 110) and non-small-cell lung cancer (NSCLC) (n = 123). MHCnuggets, a neural network-based model, was applied to estimate HLA class II IMM burdens and cellular fractions of IMMs were calculated to assess mutation clonality. We evaluated the combined impact of HLA class II germline genetic variation and class II IMM burden on clinical outcomes. Correlations between HLA class II IMM burden and density of tumor-infiltrating lymphocytes were computed from expression data.ResultsResponding tumors harbored a significantly higher HLA class II IMM burden for both melanoma and NSCLC (P ≤ 9.6e-3). HLA class II IMM burden was correlated with longer survival, particularly in the NSCLC cohort and in the context of low intratumoral IMM heterogeneity (P < 0.001). HLA class I and II IMM landscapes were largely distinct suggesting a complementary role for class II IMMs in tumor rejection. A higher HLA class II IMM burden was associated with CD4+ T-cell infiltration and programmed death-ligand 1 expression. Transcriptomic analyses revealed an inflamed tumor microenvironment for tumors harboring a high HLA class II IMM burden.ConclusionsHLA class II IMM burden identified patients with NSCLC and melanoma that attained longer survival after ICB treatment. Our findings suggest that HLA class II IMMs may impact responses to ICB in a manner that is distinct and complementary to HLA class I-mediated responses.
Project description:BackgroundHigh tumor mutation burden (TMB-H) has been proposed as a predictive biomarker for response to immune checkpoint blockade (ICB), largely due to the potential for tumor mutations to generate immunogenic neoantigens. Despite recent pan-cancer approval of ICB treatment for any TMB-H tumor, as assessed by the targeted FoundationOne CDx assay in nine tumor types, the utility of this biomarker has not been fully demonstrated across all cancers.Patients and methodsData from over 10 000 patient tumors included in The Cancer Genome Atlas were used to compare approaches to determine TMB and identify the correlation between predicted neoantigen load and CD8 T cells. Association of TMB with ICB treatment outcomes was analyzed by both objective response rates (ORRs, N = 1551) and overall survival (OS, N = 1936).ResultsIn cancer types where CD8 T-cell levels positively correlated with neoantigen load, such as melanoma, lung, and bladder cancers, TMB-H tumors exhibited a 39.8% ORR to ICB [95% confidence interval (CI) 34.9-44.8], which was significantly higher than that observed in low TMB (TMB-L) tumors [odds ratio (OR) = 4.1, 95% CI 2.9-5.8, P < 2 × 10-16]. In cancer types that showed no relationship between CD8 T-cell levels and neoantigen load, such as breast cancer, prostate cancer, and glioma, TMB-H tumors failed to achieve a 20% ORR (ORR = 15.3%, 95% CI 9.2-23.4, P = 0.95), and exhibited a significantly lower ORR relative to TMB-L tumors (OR = 0.46, 95% CI 0.24-0.88, P = 0.02). Bulk ORRs were not significantly different between the two categories of tumors (P = 0.10) for patient cohorts assessed. Equivalent results were obtained by analyzing OS and by treating TMB as a continuous variable.ConclusionsOur analysis failed to support application of TMB-H as a biomarker for treatment with ICB in all solid cancer types. Further tumor type-specific studies are warranted.
Project description:Isocitrate dehydrogenase (IDH1) is frequently mutated in glioma tissues, and this mutation mediates specific tumor-promoting mechanisms in glioma cells. We aimed to identify specific immune biomarkers for IDH1-mutation (IDH1mt) glioma. The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) were used to obtain RNA sequencing data and clinical characteristics of glioma tissues, while the stromal and immune scores of TCGA glioma tissues were determined using the ESTIMATE algorithm. Differentially expressed genes (DEGs), the protein-protein interaction(PPI) network, and least absolute shrinkage and selection operator (LASSO) and Cox regression analyses were used to select hub genes associated with stroma and immune scores and the prognoses of patients and to construct the risk model. The practicability and specificity of the risk model in both IDH1mt and IDH1-wildtype (wtIDH1) gliomas in TCGA and CGGA were evaluated. Molecular mechanisms, immunological characteristics and benefits of immune checkpoint blockade therapy in glioma tissues with IDH1mt were analyzed using GSEA, immunohistochemical staining, CIBERSORT, and T-cell dysfunction and exclusion (TIDE) analysis. The overall survival rate for IDH1mt-glioma patients with high stroma/immune scores was lower than that for those with low stroma/immune scores. A total of 222 DEGs were identified in IDH1mt glioma tissues with high stroma/immune scores. Among them, 72 genes had interactions in the PPI network, while three genes, HLA-DQA2, HOXA3, and SAA2, were selected as hub genes and used to construct risk models classifying patients into high- and low-risk score groups, followed by LASSO and Cox regression analyses. This risk model showed prognostic value in IDH1mt glioma in both TCGA and CCGA; nevertheless, the model was not suitable for wtIDH1 glioma. The risk model may act as an independent prognostic factor for IDH1mt glioma. IDH1mt glioma tissues from patients with high-risk scores showed more infiltration of M1 and CD8 T cells than those from patients with low-risk scores. Moreover, TIDE analysis showed that immune checkpoint blockade(ICB) therapy was highly beneficial for IDH1mt patients with high-risk scores. The risk model showed specific potential to predict the prognosis of IDH1mt-glioma patients, as well as guide ICB, contributing to the diagnosis and therapy of IDH1mt-glioma patients.
Project description:Immune checkpoint inhibition (ICI) therapies have reshaped the therapeutic landscape in lung cancer management, providing first-time improvements in patient response, prognosis, and overall survival. Despite their clinical effectiveness, variability in treatment responsiveness, as well as drug resistance, have led to a compelling need for predictive biomarkers facilitating the individualized selection of the most efficient therapeutic approach. Significant progress has been made in the identification of such biomarkers, with tumor mutation burden (ΤΜΒ) appearing as the leading and most promising predictive biomarker for the efficacy of ICIs in non-small cell lung cancer (NSCLC) among other tumors. Anti-PD-1/PD-L1 and anti-CTLA-4 antibodies have been extensively studied and clinically utilized. However, the overall efficiency of these drugs remains unsatisfactory, urging for the investigation of novel inhibitors, such as those targeting LAG-3, TIM-3, TIGIT and VISTA, which could be used either as a monotherapy or synergistically with the PD-1/PD-L1 or CTLA-4 blockers. Here, we investigate the role of TMB and cancer neoantigens as predictive biomarkers in the response of lung cancer patients to different ICI therapies, specifically focusing on the most recent immune checkpoint inhibitors, against LAG-3, TIM-3, TIGIT and VISTA. We further discuss the new trends in immunotherapies, including CAR T-cell therapy and personalized tumor vaccines. We also review further potential biomarkers that could be used in lung cancer response to immunotherapy, such as PD-L1+ IHC, MSI/dMMR, tumor infiltrating lymphocytes (TILs), as well as the role of the microbiome and circulating tumor DNA (ctDNA). Finally, we discuss the limitations and challenges of each.
Project description:BackgroundIn recent years, glioblastoma multiforme (GBM) has been a concern of many researchers, as it is one of the main drivers of cancer-related deaths worldwide. GBM in general usually does not responding well to immunotherapy due to its unique microenvironment.MethodsTo uncover any further informative immune-related prognostic signatures, we explored the immune-related distinction in the genetic or epigenetic features of the three types (expression profile, somatic mutation, and DNA methylation). Twenty eight immune-related hub genes were identified by Weighted Gene Co-Expression Network Analysis (WGCNA). The findings showed that three genes (IL1R1, TNFSF12, and VDR) were identified to construct an immune-related prognostic model (IRPM) by lasso regression. Then, we used three hub genes to construct an IRPM for GBM and clarify the immunity, mutation, and methylation characteristics.ResultsSurvival analysis of patients undergoing anti-program cell death protein 1 (anti-PD-1) therapy showed that overall survival was superior in the low-risk group than in the high-risk group. The high-risk group had an association with epithelial-mesenchymal transition (EMT), high immune cell infiltration, immune activation, a low mutation number, and high methylation, while the low-risk group was adverse status.ConclusionsIn conclusion, IRPM is a promising tool to distinguish the prognosis of patients and molecular and immune characteristics in GBM, and the IRPM risk score can be used to predict patient sensitivity to checkpoint inhibitor blockade therapy. Thus, three immune-related signatures will guide us in improving treatment strategies and developing objective diagnostic tools.
Project description:Combination checkpoint blockade (CCB) targeting inhibitory CTLA4 and PD1 receptors holds promise for cancer therapy. Immune-related adverse events (IRAEs) remain a major obstacle for the optimal application of CCB in cancer. Here, we analyzed B cell changes in patients with melanoma following treatment with either anti-CTLA4 or anti-PD1, or in combination. CCB therapy led to changes in circulating B cells that were detectable after the first cycle of therapy and characterized by a decline in circulating B cells and an increase in CD21lo B cells and plasmablasts. PD1 expression was higher in the CD21lo B cells, and B cell receptor sequencing of these cells demonstrated greater clonality and a higher frequency of clones compared with CD21hi cells. CCB induced proliferation in the CD21lo compartment, and single-cell RNA sequencing identified B cell activation in cells with genomic profiles of CD21lo B cells in vivo. Increased clonality of circulating B cells following CCB occurred in some patients. Treatment-induced changes in B cells preceded and correlated with both the frequency and timing of IRAEs. Patients with early B cell changes experienced higher rates of grade 3 or higher IRAEs 6 months after CCB. Thus, early changes in B cells following CCB may identify patients who are at increased risk of IRAEs, and preemptive strategies targeting B cells may reduce toxicities in these patients.
Project description:Immune checkpoint blockade (ICB) has become the standard of care for several solid tumors. Multiple combinatorial approaches have been studied to improve therapeutic efficacy. The combination of antiangiogenic agents and ICB has demonstrated efficacy in several cancers. To improve the mechanistic understanding of synergies with these treatment modalities, we performed screens of sera from long-term responding patients treated with ipilimumab and bevacizumab. We discovered a high-titer antibody response against EGF-like repeats and discoidin I-like domains protein 3 (EDIL3) that correlated with favorable clinical outcomes. EDIL3 is an extracellular protein, previously identified as a marker of poor prognosis in various malignancies. Our Tumor Immune Dysfunction and Exclusion analysis predicted that EDIL3 was associated with immune exclusion signatures for cytotoxic immune cell infiltration and nonresponse to ICB. Cancer-associated fibroblasts (CAF) were predicted as the source of EDIL3 in immune exclusion-related cells. Furthermore, The Cancer Genome Atlas Skin Cutaneous Melanoma (TCGA-SKCM) and CheckMate 064 data analyses correlated high levels of EDIL3 with increased pan-fibroblast TGFβ response, enrichment of angiogenic signatures, and induction of epithelial-to-mesenchymal transition. Our in vitro studies validated EDIL3 overexpression and TGFβ regulation in patient-derived CAFs. In pretreatment serum samples from patients, circulating levels of EDIL3 were associated with circulating levels of VEGF, and like VEGF, EDIL3 increased the angiogenic abilities of patient-derived tumor endothelial cells (TEC). Mechanistically, three-dimensional microfluidic cultures and two-dimensional transmigration assays with TEC endorsed EDIL3-mediated disruption of the lymphocyte function-associated antigen-1 (LFA-1)-ICAM-1 interaction as a possible means of T-cell exclusion. We propose EDIL3 as a potential target for improving the transendothelial migration of immune cells and efficacy of ICB therapy.
Project description:Histological transformation is a phenomenon that is well described as one of the causes of tyrosine kinase inhibitor resistance in oncogene-driven non-small-cell lung cancer (NSCLC). The use of immune checkpoint inhibitors (ICIs) as a potential mechanism of acquired resistance to immunotherapy in NSCLC to small-cell lung cancer was also recently found. Here, we report the histological transformation of sarcomatoid carcinoma and metastasis in a lung adenocarcinoma patient without targetable genetic alterations who experienced long-term disease remission after nivolumab therapy. The patient subsequently developed rapid progression in the mediastinal and retroperitoneal lymph nodes, bones, and small intestine. Surgical resection of the small intestine lesion due to acute small intestine bleeding revealed the transformation of NSCLC to sarcomatoid carcinoma. The patient died 3 months after sarcomatoid carcinoma transformation and extensive disease progression, although he was rechallenged with immunotherapy. Genomic and immunohistochemical analyses revealed a comparable abundance of gene mutations and a limited number of immune cells in the tumor microenvironment, with low infiltration of CD8+ T cells, CD4+ T cells, regulatory T cells, and PD-L1+ macrophages in metastatic tumors, revealing a noninflamed immune microenvironment for ICI-resistant tumors.
Project description:Immune checkpoint blockade (ICB) can induce durable cancer remission. However, only a small subset of patients gains benefits. While tumor mutation burden (TMB) differentiates responders from nonresponders in some cases, it is a weak predictor in tumor types with low mutation rates. Thus, there is an unmet need to discover a new class of genetic aberrations that predict ICB responses in these tumor types. Here, we report analyses of pan-cancer whole genomes which revealed that intragenic rearrangement (IGR) burden is significantly associated with immune infiltration in breast, ovarian, esophageal, and endometrial cancers, particularly with increased M1 macrophage and CD8+ T-cell signatures. Multivariate regression against spatially counted tumor-infiltrating lymphocytes in breast, endometrial, and ovarian cancers suggested that IGR burden is a more influential covariate than other genetic aberrations in these cancers. In the MEDI4736 trial evaluating durvalumab in esophageal adenocarcinoma, IGR burden correlated with patient benefits. In the IMVigor210 trial evaluating atezolizumab in urothelial carcinoma, IGR burden increased with platinum exposure and predicted patient benefit among TMB-low, platinum-exposed tumors. Altogether, we have demonstrated that IGR burden correlates with T-cell inflammation and predicts ICB benefit in TMB-low, IGR-dominant tumors, and in platinum-exposed tumors.
Project description:BackgroundsThe high morbidity and mortality of lung cancer are serious public health problems. The prognosis of lung cancer and whether to apply immune checkpoint blockade (ICB) are currently urgent problems to be solved.MethodsUsing R software, we performed Kaplan-Meier (K-M) analysis, Cox regression analysis, functional enrichment analysis, Spearman correlation analysis, and the single-sample gene set enrichment analysis.ResultsOn the Tumor IMmune Estimation Resource (TIMER2.0) website, we calculated the abundance of tumor-infiltrating immune cells (TIICs) of lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) patients. B cell and myeloid dendritic cell (DC1) were independent prognostic factors for LUAD and LUSC patients, respectively. Enrichment analysis confirmed that genes highly related to B cell or DC1 were closely related to the immune activation of lung cancer patients. In terms of adaptive immune resistance markers, CD8A, CD8B, immunomodulators (immunostimulants, major histocompatibility complex, receptors, and chemokines), immune-related pathways, tumor microenvironment score, and TIICs, high B cell/DC1 infiltration tissue was inflamed and immune-activated and might benefit more from the ICB. Genes most related to B cell [CD19, toll-like receptor 10 (TLR10), and Fc receptor-like A (FCRLA)] and DC1 (ITGB2, LAPTM5, and SLC7A7) partially clarified the roles of B cell/DC1 in predicting ICB efficacy. Among the 186 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, there were three and four KEGG pathways, which partially explained the molecular mechanisms by which B cell and DC1 simultaneously predicted the prognosis and efficacy of immunotherapy, respectively. Among five immune subtypes, the abundance of B cell/DC1 and expression of six hub genes were higher in immune C2, C3, and C6.ConclusionB cell and DC1 could predict the prognosis and ICB efficacy of LUAD and LUSC patients, respectively. The six hub genes and seven KEGG pathways might be novel immunotherapy targets. Immune C2, C3, and C6 subtypes of lung cancer patients might benefit more from ICB therapy.