Project description:Nano-sized silicon is a potential high energy density anode material for lithium ion batteries. However, the practical use of a nano-Si anode is still challenging due to its low coulombic efficiency, poor scalability and cycling stability. Herein, a Si/graphite/carbon (Si-G/C) composite with a core-shell structure was fabricated by a facile two-step chemical process, stirring-evaporating followed by heat treatment. The composite structure consists of a graphite core, coated first by silicon and then amorphous carbon, which was decomposed by pitch. The as-prepared Si-G/C composite anode demonstrates a first cycle capacity of about 650 mA h g-1, over 90% coulombic efficiency, and high capacity retention of 96.7% after 50 cycles. When paired with a commercial NCA cathode, superior cycling stability with more than 81% capacity retention was achieved for 1200 cycles. These results demonstrate that such a core-shell Si-G/C composite is a promising anode material for high energy Li-ion batteries.
Project description:Silicon-based anode materials are indispensable components in developing high energy density lithium-ion batteries, yet their practical application still faces great challenges, such as large volume change during the lithiation and delithiation process that causes the pulverization of silicon particles, and continuous formation and reformation of the solid electrolyte interfaces (SEI) which results in a low initial coulombic efficiency. As an endeavor to address these problems, in this study, Si/SiO/Li2SiO3@C structures were prepared via a facile method using SiO, pitch powder and Li2CO3/PVA solution followed by annealing treatment. The Si/SiO/Li2SiO3@C composite shows a great improvement in lithium storage where a high discharge capacity of 1645.47 mA h g-1 was delivered with the 1st C.E. of 69.05% at 100 mA g-1. These results indicate that the designed method of integrating prelithiation and carbon coating for SiO and the as-prepared macro scale Si/SiO/Li2SiO3@C structures are practical for implementation in lithium-ion battery technology.
Project description:Anode-free lithium metal batteries are the most promising candidate to outperform lithium metal batteries due to higher energy density and reduced safety hazards with the absence of metallic lithium anode during initial cell fabrication. In general, researchers report capacity retention, reversible capacity, or rate capability of the cells to study the electrochemical performance of anode-free lithium metal batteries. However, evaluating the behavior of batteries from limited aspects may easily overlook other information hidden deep inside the meretricious results or even lead to misguided data interpretation. In this work, we present an integrated protocol combining different types of cell configuration to determine various sources of irreversible coulombic efficiency in anode-free lithium metal cells. The decrypted information from the protocol provides an insightful understanding of the behaviors of LMBs and AFLMBs, which promotes their development for practical applications.
Project description:Silicon demonstrates great potential as a next-generation lithium ion battery anode because of high capacity and elemental abundance. However, the issue of low initial Coulombic efficiency needs to be addressed to enable large-scale applications. There are mainly two mechanisms for this lithium loss in the first cycle: the formation of the solid electrolyte interphase and lithium trapping in the electrode. The former has been heavily investigated while the latter has been largely neglected. Here, through both theoretical calculation and experimental study, we demonstrate that by introducing Ge substitution in Si with fine compositional control, the energy barrier of lithium diffusion will be greatly reduced because of the lattice expansion. This effect of isovalent isomorphism significantly reduces the Li trapping by ~70% and improves the initial Coulombic efficiency to over 90%. We expect that various systems of battery materials can benefit from this mechanism for fine-tuning their electrochemical behaviors.
Project description:Transition metal oxides with high capacity still confront the challenges of low initial coulombic efficiency (ICE, generally <70%) and inferior cyclic stability for practical lithium-storage. Herein, a hollow slender carambola-like Li0.43 FeO1.51 with Fe vacancies is proposed by a facile reaction of Fe3+ -containing metal-organic frameworks with Li2 CO3 . Synthesis experiments combined with synchrotron-radiation X-ray measurements identify that the hollow structure is caused by Li2 CO3 erosion, while the formation of Fe vacancies is resulted from insufficient lithiation process with reduced Li2 CO3 dosage. The optimized lithium iron oxides exhibit remarkably improved ICE (from 68.24% to 86.78%), high-rate performance (357 mAh g-1 at 5 A g-1 ), and superior cycling stability (884 mAh g-1 after 500 cycles at 0.5 A g-1 ). Paring with LiFePO4 cathodes, the full-cells achieve extraordinary cyclic stability with 99.3% retention after 100 cycles. The improved electrochemical performances can be attributed to the synergy of structural characteristics and Fe vacancy engineering. The unique hollow structure alleviates the volume expansion of Li0.43 FeO1.51 , while the in situ generated Fe vacancies are powerful for modulating electronic structure with boosted Li+ transport rate and catalyze more Li2 O decomposition to react with Fe in the first charge process, hence enhancing the ICE of lithium iron oxide anode materials.
Project description:Nano-structured silicon is an attractive alternative anode material to conventional graphite in lithium-ion batteries. However, the anode designs with higher silicon concentrations remain to be commercialized despite recent remarkable progress. One of the most critical issues is the fundamental understanding of the lithium-silicon Coulombic efficiency. Particularly, this is the key to resolve subtle yet accumulatively significant alterations of Coulombic efficiency by various paths of lithium-silicon processes over cycles. Here, we provide quantitative and qualitative insight into how the irreversible behaviors are altered by the processes under amorphous volume changes and hysteretic amorphous-crystalline phase transformations. Repeated latter transformations over cycles, typically featured as a degradation factor, can govern the reversibility behaviors, improving the irreversibility and eventually minimizing cumulative irreversible lithium consumption. This is clearly different from repeated amorphous volume changes with different lithiation depths. The mechanism behind the correlations is elucidated by electrochemical and structural probing.
Project description:As anode material for sodium ion batteries (SIBs), biomass-derived hard carbon has attracted a great deal of attention from researchers because of its renewable nature and low cost. However, its application is greatly limited due to its low initial Coulomb efficiency (ICE). In this work, we employed a simple two-step method to prepare three different structures of hard carbon materials from sisal fibers and explored the structural effects on the ICE. It was determined that the obtained carbon material, with hollow and tubular structure (TSFC), exhibits the best electrochemical performance, with a high ICE of 76.7%, possessing a large layer spacing, a moderate specific surface area, and a hierarchical porous structure. In order to better understand the sodium storage behavior in this special structural material, exhaustive testing was performed. Combining the experimental and theoretical results, an "adsorption-intercalation" model for the sodium storage mechanism of the TSFC is proposed.
Project description:With the impact of the COVID-19 lockdown, global supply chain crisis, and Russo-Ukrainian war, an energy-intensive society with sustainable, secure, affordable, and recyclable rechargeable batteries is increasingly out of reach. As demand soars, recent prototypes have shown that anode-free configurations, especially anode-free sodium metal batteries, offer realistic alternatives that are better than lithium-ion batteries in terms of energy density, cost, carbon footprint, and sustainability. This Perspective explores the current state of research on improving the performance of anode-free Na metal batteries from five key fields, as well as the impact on upstream industries compared to commercial batteries.
Project description:Transparent devices have recently attracted substantial attention. Various applications have been demonstrated, including displays, touch screens, and solar cells; however, transparent batteries, a key component in fully integrated transparent devices, have not yet been reported. As battery electrode materials are not transparent and have to be thick enough to store energy, the traditional approach of using thin films for transparent devices is not suitable. Here we demonstrate a grid-structured electrode to solve this dilemma, which is fabricated by a microfluidics-assisted method. The feature dimension in the electrode is below the resolution limit of human eyes, and, thus, the electrode appears transparent. Moreover, by aligning multiple electrodes together, the amount of energy stored increases readily without sacrificing the transparency. This results in a battery with energy density of 10 Wh/L at a transparency of 60%. The device is also flexible, further broadening their potential applications. The transparent device configuration also allows in situ Raman study of fundamental electrochemical reactions in batteries.
Project description:Tin and tin compounds are perceived as promising next-generation lithium (sodium)-ion batteries anodes because of their high theoretical capacity, low cost and proper working potentials. However, their practical applications are severely hampered by huge volume changes during Li+ (Na+) insertion and extraction processes, which could lead to a vast irreversible capacity loss and short cycle life. The significance of morphology design and synergic effects-through combining compatible compounds and/or metals together-on electrochemical properties are analyzed to circumvent these problems. In this review, recent progress and understanding of tin and tin compounds used in lithium (sodium)-ion batteries have been summarized and related approaches to optimize electrochemical performance are also pointed out. Superiorities and intrinsic flaws of the above-mentioned materials that can affect electrochemical performance are discussed, aiming to provide a comprehensive understanding of tin and tin compounds in lithium(sodium)-ion batteries.