Project description:BackgroundDuring the first wave of the COVID-19 pandemic a high case fatality rate (CFR) was noticed worldwide including also Germany where the first European cases have been observed. The WHO recommended immediate intubation for patients with dyspnoea which has since been revised after reviewing the initial clinical outcome. The objective of this study is to analyze CFR and assess if there is an advantage of a more conservative management of COVID-19 induced hypoxemia.MethodsPCR confirmed COVID-19 infections and death counts were obtained for all German districts from 27 Jan 2020 until 15 Feb 2021 using official reports of Robert Koch Institute Berlin, Germany. A moving average CFRt was constructed by dividing disease related deaths two weeks after a given index day by the number of infections two weeks prior to that date. In addition to a local comparison also mortality outcomes in other German speaking countries were compared.ResultsThe mean CFR is estimated to be 2.92% based on 71.965 fatalities and 2.465.407 cases. There was a large regional scattering of CFRs across the German districts. Differences of the mortality pattern were observed also at state level and preserved across different sex and age groups while being largely independent of case numbers. Although Munich city had higher infection rates, more patients died during the first wave in Hamburg (OR 1.6, 95% CI 1.3-1.9) which was mirrored also by higher death risk at Hamburg intensive care units (OR 2.0, 95% CI 1.3-3.1). While the majority of Munich hospitals favoured a conservative management of hypoxemia including high flow nasal cannula (HFNC), Hamburg hospitals followed a more aggressive scheme of early mechanical ventilation (MV). Austria and Switzerland experienced higher CFRs than Germany during the first wave but after changing their treatment guidelines, both countries experienced lower CFRs during the second wave.ConclusionUsing retrospective public health data, different case fatality rates have been observed across Germany. A more conservative management of COVID-19 induced Adult Respiratory Distress Syndrome (ARDS) is justified also by epidemiological data.
Project description:ObjectivesThe case fatality rate (CFR) of coronavirus disease 2019 (COVID-19) varies significantly between countries. We aimed to describe the associations between health indicators and the national CFRs of COVID-19.MethodsWe identified for each country health indicators potentially associated with the national CFRs of COVID-19. We extracted data for 18 variables from international administrative data sources for 34 member countries of the Organization for Economic Cooperation and Development (OECD). We excluded the collinear variables and examined the 16 variables in multivariable analysis. A dynamic web-based model was developed to analyse and display the associations for the CFRs of COVID-19. We followed the Guideline for Accurate and Transparent Health Estimates Reporting (GATHER).ResultsIn multivariable analysis, the variables significantly associated with the increased CFRs were percentage of obesity in ages >18 years (β = 3.26; 95%CI = 1.20, 5.33; p 0.003), tuberculosis incidence (β = 3.15; 95%CI = 1.09, 5.22; p 0.004), duration (days) since first death due to COVID-19 (β = 2.89; 95%CI = 0.83, 4.96; p 0.008), and median age (β = 2.83; 95%CI = 0.76, 4.89; p 0.009). The COVID-19 test rate (β = -3.54; 95%CI = -5.60, -1.47; p 0.002), hospital bed density (β = -2.47; 95%CI = -4.54, -0.41; p 0.021), and rural population ratio (β = -2.19; 95%CI = -4.25, -0.13; p 0.039) decreased the CFR.ConclusionsThe pandemic hits population-dense cities. Available hospital beds should be increased. Test capacity should be increased to enable more effective diagnostic tests. Older patients and patients with obesity and their caregivers should be warned about a potentially increased risk.
Project description:The objective of this study was to evaluate the trend of reported case fatality rate (rCFR) of COVID-19 over time, using globally reported COVID-19 cases and mortality data. We collected daily COVID-19 diagnoses and mortality data from the WHO's daily situation reports dated January 1 to December 31, 2020. We performed three time-series models [simple exponential smoothing, auto-regressive integrated moving average, and automatic forecasting time-series (Prophet)] to identify the global trend of rCFR for COVID-19. We used beta regression models to investigate the association between the rCFR and potential predictors of each country and reported incidence rate ratios (IRRs) of each variable. The weekly global cumulative COVID-19 rCFR reached a peak at 7.23% during the 17th week (April 22-28, 2020). We found a positive and increasing trend for global daily rCFR values of COVID-19 until the 17th week (pre-peak period) and then a strong declining trend up until the 53rd week (post-peak period) toward 2.2% (December 29-31, 2020). In pre-peak of rCFR, the percentage of people aged 65 and above and the prevalence of obesity were significantly associated with the COVID-19 rCFR. The declining trend of global COVID-19 rCFR was not merely because of increased COVID-19 testing, because COVID-19 tests per 1,000 population had poor predictive value. Decreasing rCFR could be explained by an increased rate of infection in younger people or by the improvement of health care management, shielding from infection, and/or repurposing of several drugs that had shown a beneficial effect on reducing fatality because of COVID-19.
Project description:Previous studies have identified dementia as a risk factor for death from coronavirus disease 2019 (COVID-19). However, it is unclear whether Alzheimer's disease (AD) is an independent risk factor for COVID-19 case fatality rate. In a retrospective cohort study, we identified 387,841 COVID-19 patients through TriNetX. After adjusting for demographics and comorbidities, we found that AD patients had higher odds of dying from COVID-19 compared to patients without AD (Odds Ratio: 1.20, 95%confidence interval: 1.09-1.32, p < 0.001). Interestingly, we did not observe increased mortality from COVID-19 among patients with vascular dementia. These data are relevant to the evolving COVID-19 pandemic.
Project description:PurposeTo examine whether declines in the crude U.S. COVID-19 case fatality ratio is due to improved clinical care and/or other factors.MethodsWe used multivariable logistic regression, adjusted for age and other individual-level characteristics, to examine associations between report month and mortality among confirmed and probable COVID-19 cases and hospitalized cases in Georgia reported March 2, 2020 to March 31, 2021.ResultsCompared to August 2020, mortality risk among cases was lowest in November 2020 (OR = 0.84; 95% CI: 0.78-0.91) and remained lower until March 2021 (OR = 0.86; 95% CI: 0.77-0.95). Among hospitalized cases, mortality risk increased in December 2020 (OR = 1.16, 95% CI: 1.07-1.27) and January 2021 (OR = 1.25; 95% CI: 1.14-1.36), before declining until March 2021 (OR = 0.90, 95% CI: 0.78-1.04).ConclusionsAfter adjusting for other factors, including the shift to a younger age distribution of cases, we observed lower mortality risk from November 2020 to March 2021 compared to August 2020 among cases. This suggests that improved clinical management may have contributed to lower mortality risk. Among hospitalized cases, mortality risk increased again in December 2020 and January 2021, but then decreased to a risk similar to that among all cases by March 2021.
Project description:We derive a simple asymptotic approximation for the long-run case fatality rate of COVID-19 (alpha and delta variants) and show that these estimations are highly correlated to the interaction between US State median age and projected US unemployment rate (Adj. r2 = 60%). We contrast this to the high level of correlation between point (instantaneous) estimates of per state case fatality rates and the interaction of median age, population density and current unemployment rates (Adj. r2 = 50.2%). To determine whether this is caused by a "race effect," we then analyze unemployment, race, median age and population density across US states and show that adding the interaction of African American population and unemployment explains 53.5% of the variance in COVID case fatality rates for the alpha and delta variants when considering instantaneous case fatality rate. Interestingly, when the asymptotic case fatality rate is used, the dependence on the African American population disappears, which is consistent with the fact that in the long-run COVID does not discriminate on race, but may discriminate on access to medical care which is highly correlated to employment in the US. The results provide further evidence of the impact inequality can have on case fatality rates in COVID-19 and the impact complex social, health and economic factors can have on patient survival.
Project description:ObjectivesCoronavirus disease 2019 (COVID-19) is the most devastating pandemic to affect humanity in a century. In this article, we assessed tests as a policy instrument and policy enactment to contain COVID-19 and potentially reduce mortalities.Study designA model was devised to estimate the factors that influenced the death rate across 121 nations and by income group.ResultsNations with a higher proportion of people aged 65+ years had a higher fatality rate (P = 0.00014). Delaying policy enactment led to a higher case fatality rate (P = 0.0013). A 10% delay time to act resulted in a 3.7% higher case fatality rate. This study found that delaying policies for international travel restrictions, public information campaigns, and testing policies increased the fatality rate. Tests also impacted the case fatality rate, and nations with 10% more cumulative tests per million people showed a 2.8% lower mortality rate. Citizens of nations who can access more destinations without the need to have a prior visa have a significant higher mortality rate than those who need a visa to travel abroad (P = 0.0040).ConclusionTests, as a surrogate of policy action and earlier policy enactment, matter for saving lives from pandemics as such policies reduce the transmission rate of the pandemic.
Project description:We estimated the case-fatality risk for coronavirus disease cases in China (3.5%); China, excluding Hubei Province (0.8%); 82 countries, territories, and areas (4.2%); and on a cruise ship (0.6%). Lower estimates might be closest to the true value, but a broad range of 0.25%-3.0% probably should be considered.
Project description:While the epidemic of SARS-CoV-2 has spread worldwide, there is much concern over the mortality rate that the infection induces. Available data suggest that COVID-19 case fatality rate had varied temporally (as the epidemic has progressed) and spatially (among countries). Here, we attempted to identify key factors possibly explaining the variability in case fatality rate across countries. We used data on the temporal trajectory of case fatality rate provided by the European Center for Disease Prevention and Control, and country-specific data on different metrics describing the incidence of known comorbidity factors associated with an increased risk of COVID-19 mortality at the individual level. We also compiled data on demography, economy and political regimes for each country. We found that temporal trajectories of case fatality rate greatly vary among countries. We found several factors associated with temporal changes in case fatality rate both among variables describing comorbidity risk and demographic, economic and political variables. In particular, countries with the highest values of DALYs lost to cardiovascular, cancer and chronic respiratory diseases had the highest values of COVID-19 CFR. CFR was also positively associated with the death rate due to smoking in people over 70 years. Interestingly, CFR was negatively associated with share of death due to lower respiratory infections. Among the demographic, economic and political variables, CFR was positively associated with share of the population over 70, GDP per capita, and level of democracy, while it was negatively associated with number of hospital beds ×1000. Overall, these results emphasize the role of comorbidity and socio-economic factors as possible drivers of COVID-19 case fatality rate at the population level.