Ontology highlight
ABSTRACT:
SUBMITTER: Qiu S
PROVIDER: S-EPMC9209452 | biostudies-literature | 2022 Jun
REPOSITORIES: biostudies-literature
Qiu Shangran S Miller Matthew I MI Joshi Prajakta S PS Lee Joyce C JC Xue Chonghua C Ni Yunruo Y Wang Yuwei Y De Anda-Duran Ileana I Hwang Phillip H PH Cramer Justin A JA Dwyer Brigid C BC Hao Honglin H Kaku Michelle C MC Kedar Sachin S Lee Peter H PH Mian Asim Z AZ Murman Daniel L DL O'Shea Sarah S Paul Aaron B AB Saint-Hilaire Marie-Helene MH Alton Sartor E E Saxena Aneeta R AR Shih Ludy C LC Small Juan E JE Smith Maximilian J MJ Swaminathan Arun A Takahashi Courtney E CE Taraschenko Olga O You Hui H Yuan Jing J Zhou Yan Y Zhu Shuhan S Alosco Michael L ML Mez Jesse J Stein Thor D TD Poston Kathleen L KL Au Rhoda R Kolachalama Vijaya B VB
Nature communications 20220620 1
Worldwide, there are nearly 10 million new cases of dementia annually, of which Alzheimer's disease (AD) is the most common. New measures are needed to improve the diagnosis of individuals with cognitive impairment due to various etiologies. Here, we report a deep learning framework that accomplishes multiple diagnostic steps in successive fashion to identify persons with normal cognition (NC), mild cognitive impairment (MCI), AD, and non-AD dementias (nADD). We demonstrate a range of models cap ...[more]