Project description:RNAi technology is taking strong position among the key therapeutic modalities, with dozens of siRNA-based programs entering and successfully progressing through clinical stages of drug development. To further explore potentials of RNAi technology as therapeutics, we engineered and tested VEGFR2 siRNA molecules specifically targeted to tumors through covalently conjugated cyclo(Arg-Gly-Asp-d-Phe-Lys[PEG-MAL]) (cRGD) peptide, known to bind αvβ3 integrin receptors. cRGD-siRNAs were demonstrated to specifically enter and silence targeted genes in cultured αvβ3 positive human cells (HUVEC). Microinjection of zebrafish blastocysts with VEGFR2 cRGD-siRNA resulted in specific inhibition of blood vessel growth. In tumor-bearing mice, intravenously injected cRGD-siRNA molecules generated no innate immune response and bio-distributed to tumor tissues. Continuous systemic delivery of two different VEGFR2 cRGD-siRNAs resulted in down-regulation of corresponding mRNA (55 and 45%) and protein (65 and 45%) in tumors, as well as in overall reduction of tumor volume (90 and 70%). These findings demonstrate strong potential of cRGD-siRNA molecules as anti-tumor therapy.
Project description:Platinum-based chemotherapy has been widely used to treat cancers including ovarian cancer; however, it suffers from dose-limiting toxicity. Judiciously designed drug nanocarriers can enhance the anticancer efficacy of platinum-based chemotherapy while reducing its systemic toxicity. Herein the authors report a stable and water-soluble unimolecular nanoparticle constructed from a hydrophilic multi-arm star block copolymer poly(amidoamine)-b-poly(aspartic acid)-b-poly(ethylene glycol) (PAMAM-PAsp-PEG) conjugated with both cRGD (cyclo(Arg-Gly-Asp-D-Phe-Cys) peptide and cyanine5 (Cy5) fluorescent dye as a platinum-based drug nanocarrier for targeted ovarian cancer therapy. Carboplatin is complexed to the poly(aspartic acid) inner shell via pH-responsive ion-dipole interactions between carboplatin and the carboxylate groups of poly(aspartic acid). Based on flow cytometry and confocal laser scanning microscopy analyses, cRGD-conjugated unimolecular nanoparticles exhibit much higher cellular uptake by ovarian cancer cells overexpressing αv β3 integrin than nontargeted (i.e., cRGD-lacking) ones. Carboplatin-complexed cRGD-conjugated nanoparticles also exhibit higher cytotoxicity than nontargeted nanoparticles as well as free carboplatin, while empty unimolecular nanoparticles show no cytotoxicity. These results indicate that stable unimolecular nanoparticles made of individual hydrophilic multi-arm star block copolymer molecules conjugate with tumor-targeting ligands and dyes (i.e., PAMAM-PAsp-PEG-cRGD/Cy5) are promising nanocarriers for platinum-based anticancer drugs for targeted cancer therapy.
Project description:The hydrophobicity and high potency of many therapeutic agents makes them difficult to use effectively in clinical practice. This work focuses on conjugating phospholipid tails (2T) onto podophyllotoxin (P) and its analogue (N) using a linker and characterizing the effects of their incorporation into lipid-based drug delivery vehicles for triggered ultrasound delivery. Differential Scanning Calorimetry results show that successfully synthesized lipophilic prodrugs, 2T-P (~28 % yield) and 2T-N(~26 % yield), incorporate within the lipid membranes of liposomes. As a result of this, increased stability and incorporation are observed in 2T-P and 2T-N in comparison to the parent compounds P and N. Molecular dynamic simulation results support that prodrugs remain within the lipid membrane over a relevant range of concentrations. 2T-N's (IC50: 20 nM) biological activity was retained in HeLa cells (cervical cancer), whereas 2T-P's (IC50: ~4 µM) suffered, presumably due to steric hindrance. Proof-of-concept studies using ultrasound in vitro microbubble and nanodroplet delivery vehicles establish that these prodrugs are capable of localized drug delivery. This study provides useful information about the synthesis of double tail analogues of insoluble chemotherapeutic agents to facilitate incorporation into drug delivery vehicles. The phospholipid attachment strategy presented here could be applied to other well suited drugs such as gemcitabine, commonly known for its treatment of pancreatic cancer.
Project description:Dendrimers comprise a category of branched materials with diverse functions that can be constructed with defined architectural and chemical structures. When decorated with bioactive ligands made of peptides and saccharides through peripheral chemical groups, dendrimer conjugates are turned into nanomaterials possessing attractive binding properties with the cognate receptors. At the cellular level, bioactive dendrimer conjugates can interact with cells with avidity and selectivity, and this function has particularly stimulated interests in investigating the targeting potential of dendrimer materials for the design of drug delivery systems. In addition, bioactive dendrimer conjugates have so far been studied for their versatile capabilities to enhance stability, solubility and absorption of various types of therapeutics. This review presents a brief discussion on three aspects of the recent studies to use peptide- and saccharide-conjugated dendrimers for drug delivery: (i) synthesis methods, (ii) cell- and tissue-targeting properties and (iii) applications of conjugated dendrimers in drug delivery nanodevices. With more studies to elucidate the structure-function relationship of ligand-dendrimer conjugates in transporting drugs, the conjugated dendrimers hold promise to facilitate targeted delivery and improve drug efficacy for discovery and development of modern pharmaceutics.
Project description:The vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) signaling cascade plays a critical role in tumor angiogenesis and metastasis and has been correlated with several poorly prognostic cancers such as malignant gliomas. Although a number of anti-VEGFR therapies have been conceived, inefficient drug administration still limits their therapeutic efficacy and raises concerns of potential side effects. In the present work, we propose the use of uniform mesoporous silica nanoparticles (MSNs) for VEGFR targeted positron emission tomography imaging and delivery of the anti-VEGFR drug (i.e., sunitinib) in human glioblastoma (U87MG) bearing murine models. MSNs were synthesized, characterized and modified with polyethylene glycol, anti-VEGFR ligand VEGF121 and radioisotope (64)Cu, followed by extensive in vitro, in vivo and ex vivo studies. Our results demonstrated that a significantly higher amount of sunitinib could be delivered to the U87MG tumor by targeting VEGFR when compared with the non-targeted counterparts. The as-developed VEGF121-conjugated MSN could become another attractive nanoplatform for the design of future theranostic nanomedicine.
Project description:Current chemotherapy for glioma is rarely satisfactory due to low therapeutic efficiency and systemic side effects. We have developed a glioma-targeted drug delivery system based on graphene oxide. Targeted peptide chlorotoxin-conjugated graphene oxide (CTX-GO) sheets were successfully synthesized and characterized. Doxorubicin was loaded onto CTX-GO (CTX-GO/DOX) with high efficiency (570 mg doxorubicin per gram CTX-GO) via noncovalent interactions. Doxorubicin release was pH-dependent and showed sustained-release properties. Cytotoxicity experiments demonstrated that CTX-GO/DOX mediated the highest rate of death of glioma cells compared with free doxorubicin or graphene oxide loaded with doxorubicin only. Further, conjugation with chlorotoxin enhanced accumulation of doxorubicin within glioma cells. These findings indicate that CTX-GO is a promising platform for drug delivery and provide a rationale for developing a glioma-specific drug delivery system.
Project description:Amphiphilic diblock copolymers bearing histone deacetylase inhibitors (HDACi) (4-phenyl butyric acid and valproic acid) were synthesized by the ring-opening polymerization of γ-4-phenylbutyrate-ε-caprolactone (PBACL), γ-valproate-ε-caprolactone (VPACL), and ε-caprolactone (CL) from a poly(ethylene glycol) macroinitiator (PEG). These amphiphilic diblock copolymers self-assembled into stable pro-drug micelles and demonstrated excellent biocompatibility. High loading of doxorubicin (DOX) up to 5.1 wt% was achieved. Optimized micelles enabled sustained drug release in a concentration-dependent manner over time to expand the therapeutic window of cytotoxic small molecule drugs.
Project description:Liver fibrosis is caused by excessive accumulation of extracellular matrix during chronic liver injuries. Although clinical evidence suggests that liver fibrosis can be reversed, there is no standard therapy for liver fibrosis. Moreover, there is a lack of diagnostic tools to detect early-stage liver fibrosis. Activation of hepatic stellate cells (HSCs) is the key step during liver fibrogenesis, and its mechanism has been extensively studied by various cell culture and animal models. Targeted delivery of therapeutic agents to activated HSCs is therefore critical for the successful treatment of liver fibrosis. A number of protein markers have been found to be overexpressed in activated HSCs, and their ligands have been used to specifically deliver various antifibrotic agents. In this review, we summarize these HSC-specific protein markers and their ligands for targeted delivery of antifibrotic agents.
Project description:The present study describes the biophysical characterization of generation-five poly(amidoamine) (PAMAM) dendrimers conjugated with riboflavin (RF) as a cancer-targeting platform. Two new series of dendrimers were designed, each presenting the riboflavin ligand attached at a different site (isoalloxazine at N-3 and d-ribose at N-10) and at varying ligand valency. Isothermal titration calorimetry (ITC) and differential scanning calorimetry (DSC) were used to determine the binding activity for riboflavin binding protein (RfBP) in a cell-free solution. The ITC data shows dendrimer conjugates have K(D) values of ? 465 nM on a riboflavin basis, an affinity ~93-fold lower than that of free riboflavin. The N-3 series showed greater binding affinity in comparison with the N-10 series. Notably, the affinity is inversely correlated with ligand valency. These findings are also corroborated by DSC, where greater protein-conjugate stability is achieved with the N-3 series and at lower ligand valency.