Project description:Bright and stable blue emitters with narrow full-width at half-maxima are particularly desirable for applications in television displays and related technologies. Here, this study shows that doping aluminum (Al3+) ion into CsPbBr3 nanocrystals (NCs) using AlBr3 can afford lead-halide perovskites NCs with stable blue photoluminescence. First, theoretical and experimental analyses reveal that the extended band gap and quantum confinement effect of elongated shape give rise to the desirable blueshifted emission. Second, the aluminum ion incorporation path is rationalized qualitatively by invoking fundamental considerations about binding relations in AlBr3 and its dimer. Finally, the absence of anion-exchange effect is corroborated when green CsPbBr3 and blue Al:CsPbBr3 NCs are mixed. Combinations of the above two NCs with red-emitting CdSe@ZnS NCs result in UV-pumped white light-emitting diodes (LED) with an National Television System Committee (NTSC) value of 116% and ITU-R Recommendation B.T. 2020 (Rec. 2020) of 87%. The color coordinates of the white LED are optimized at (0.32, 0.34) in CIE 1931. The results suggest that low-cost, earth-abundant, solution-processable Al-doped perovskite NCs can be promising candidate materials for blue down-conversion layer in backlit displays.
Project description:Mn-doped CsPbBr3 perovskite magic sized clusters (PMSCs) are synthesized for the first time using benzoic acid and benzylamine as passivating ligands and MnCl2·4H2O and MnBr2 as the Mn2+ dopant sources at room temperature. The same approach is used to prepare Mn-doped CsPbBr3 perovskite quantum dots (PQDs). The concentration of MnX2 (X = Cl or Br) affects the excitonic absorption of the PMSCs and PQDs. A higher concentration of MnX2 favors PMSCs over PQDs as well as higher photoluminescence (PL) quantum yields (QYs) and PL stability. The large ratio between the characteristic Mn emission (∼590 nm) and the host band-edge emission shows efficient energy transfer from the host exciton to the Mn2+ dopant. PL excitation, electron paramagnetic resonance, and time-resolved PL results all support Mn2+ doping in CsPbBr3, which likely replaces Pb2+ ions. This study establishes a new method for synthesizing Mn-doped PMSCs with good PL stability, high PLQY and highly effective passivation.
Project description:Stable cesium lead bromide perovskite nanocrystals (NCs) showing a near-unity photoluminescence quantum yield (PLQY), narrow emission profile, and tunable fluorescence peak in the green region can be considered the ideal class of nanomaterials for optoelectronic applications. However, a general route for ensuring the desired features of the perovskite NCs is still missing. In this paper, we propose a synthetic protocol for obtaining near-unity PLQY perovskite nanocubes, ensuring their size control and, consequently, a narrow and intense emission through the modification of the reaction temperature and the suitable combination ratio of the perovskite constituting elements. The peculiarity of this protocol is represented by the dissolution of the lead precursor (PbBr2) as a consequence of the exclusive complexation with the bromide anions released by the in situ SN2 reaction between oleylamine (the only surfactant introduced in the reaction mixture) and 1-bromohexane. The obtained CsPbBr3 nanocubes exhibit variable size (ranging from 6.7 ± 0.7 nm to 15.2 ± 1.2 nm), PL maxima between 505 and 517 nm, and near-unity PLQY with a narrow emission profile (fwhm of 17-19 nm). Additionally, the NCs synthesized with this approach preserve their high PLQYs even after 90 days of storage under ambient conditions, thus displaying a remarkable optical stability. Through the rationalization of the obtained results, the proposed synthetic protocol provides a new ground for the direct preparation of differently structured perovskite NCs without resorting to any additional post-synthetic treatment for improving their emission efficiency and stability.
Project description:All-inorganic perovskite quantum dots (QDs) CsPbX3 (X = Cl, Br, and I) have recently emerged as a new promising class of X-ray scintillators. However, the instability of perovskite QDs and the strong optical scattering of the thick opaque QD scintillator film imped it to realize high-quality and robust X-ray image. Herein, the europium (Eu) doped CsPbBr3 QDs are in situ grown inside transparent amorphous matrix to form glass-ceramic (GC) scintillator with glass phase serving as both matrix and encapsulation for the perovskite QD scintillators. The small amount of Eu dopant optimizes the crystallization of CsPbBr3 QDs and makes their distribution more uniform in the glass matrix, which can significantly reduce the light scattering and also enhance the photoluminescence emission of CsPbBr3 QDs. As a result, a remarkably high spatial resolution of 15.0 lp mm-1 is realized thanks to the reduced light scattering, which is so far a record resolution for perovskite scintillator based X-ray imaging, and the scintillation stability is also significantly improved compared to the bare perovskite QD scintillators. Those results provide an effective platform particularly for the emerging perovskite nanocrystal scintillators to reduce light scattering and improve radiation hardness.
Project description:Double perovskites are a promising family of lead-free materials that not only replace lead but also enable new optoelectronic applications beyond photovoltaics. Recently, a titanium (Ti)-based vacancy-ordered double perovskite, Cs2TiBr6, has been reported as an example of truly sustainable and earth-abundant perovskite with controversial results in terms of photoluminescence and environmental stability. Our work looks at this material from a new perspective, i.e., at the nanoscale. We demonstrate the first colloidal synthesis of Cs2TiX6 nanocrystals (X = Br, Cl) and observe tunable morphology and size of the nanocrystals according to the set reaction temperature. The Cs2TiBr6 nanocrystals synthesized at 185 °C show a bandgap of 1.9 eV and are relatively stable up to 8 weeks in suspensions. However, they do not display notable photoluminescence. The centrosymmetric crystal structure of Cs2TiBr6 suggests that this material could enable third-harmonic generation (THG) responses. Indeed, we provide a clear evidence of THG signals detected by the THG microscopy technique. As only a few THG-active halide perovskite materials are known to date and they are all lead-based, our findings promote future research on Cs2TiBr6 as well as on other lead-free double perovskites, with stronger focus on currently unexplored nonlinear optical applications.
Project description:All inorganic cesium lead trihalide nanocrystals are promising light emitters for bright light emitting diodes (LEDs). Here, CsPb(BrCl)1.5 nanocrystals in metal-organic frameworks (MOF) thin films are demonstrated to achieve bright and stable blue LEDs. The lead metal nodes in the MOF thin film react with Cs-halide salts, resulting in 10-20 nm nanocrystals. This is revealed by X-ray scattering and transmission electron microscopy. Employing the CsPbX3 -MOF thin films as emission layers, bright deep blue and sky-blue LEDs are demonstrated that emit at 452 and 476 nm respectively. The maximum external quantum efficiencies of these devices are 0.72% for deep blue LEDs and 5.6% for sky blue LEDs. More importantly, the device can maintain 50% of its original electroluminescence (T50 ) for 2.23 h when driving at 4.2 V. Detailed optical spectroscopy and time-of-flight secondary ion mass spectroscopy suggest that the ion migration can be suppressed that maintains the emission brightness and spectra. The study provides a new route for fabricating stable blue light emitting diodes with all-inorganic perovskite nanocrystals.
Project description:Metal halide perovskites (MHPs) are of great interest for optoelectronics because of their high quantum efficiency in solar cells and light-emitting devices. However, exploring an effective strategy to further improve their optical activities remains a considerable challenge. Here, we report that nanocrystals (NCs) of the initially nonfluorescent zero-dimensional (0D) cesium lead halide perovskite Cs4PbBr6 exhibit a distinct emission under a high pressure of 3.01 GPa. Subsequently, the emission intensity of Cs4PbBr6 NCs experiences a significant increase upon further compression. Joint experimental and theoretical analyses indicate that such pressure-induced emission (PIE) may be ascribed to the enhanced optical activity and the increased binding energy of self-trapped excitons upon compression. This phenomenon is a result of the large distortion of [PbBr6]4- octahedral motifs resulting from a structural phase transition. Our findings demonstrate that high pressure can be a robust tool to boost the photoluminescence efficiency and provide insights into the relationship between the structure and optical properties of 0D MHPs under extreme conditions.
Project description:Lead-halide perovskite nanocrystals are an attractive class of materials since they can be easily fabricated, their optical properties can be tuned all over the visible spectral range, and they possess high emission quantum yields and narrow photoluminescence linewidths. Doping perovskites with lanthanides is one of the ways to widen the spectral range of their emission, making them attractive for further applications. Herein, we summarize the recent progress in the synthesis of ytterbium-doped perovskite nanocrystals in terms of the varying synthesis parameters such as temperature, ligand molar ratio, ytterbium precursor type, and dopant content. We further consider the dependence of morphology (size and ytterbium content) and optical parameters (photoluminescence quantum yield in visible and near-infrared spectral ranges) on the synthesis parameters. The developed open-source code approximates those dependencies as multiple-parameter linear regression and allows us to estimate the value of the photoluminescence quantum yield from the parameters of the perovskite synthesis. Further use and promotion of an open-source database will expand the possibilities of the developed code to predict the synthesis protocols for doped perovskite nanocrystals.
Project description:Ensuring nuclear safety has become of great significance as nuclear power is playing an increasingly important role in supplying worldwide electricity. β-ray monitoring is a crucial method, but commercial organic scintillators for β-ray detection suffer from high temperature failure and irradiation damage. Here, we report a type of β-ray scintillator with good thermotolerance and irradiation hardness based on a two-dimensional halide perovskite. Comprehensive composition engineering and doping are carried out with the rationale elaborated. Consequently, effective β-ray scintillation is obtained, the scintillator shows satisfactory thermal quenching and high decomposition temperature, no functionality decay or hysteresis is observed after an accumulated radiation dose of 10 kGy (dose rate 0.67 kGy h-1). Besides, the two-dimensional halide perovskite β-ray scintillator also overcomes the notorious intrinsic water instability, and benefits from low-cost aqueous synthesis along with superior waterproofness, thus paving the way towards practical application.