Project description:Tp53 mutation is frequent and associates with malignant, high-grade ovarian cancer. However, the details about the progression of Tp53 mutation from heterozygous to homozygous, and association between genotypes and morphological transformation are not clear. We further investigated the expression and mutation of Tp53 and associated markers such as p21 and HDM2 in ovarian cancer.Areas of contiguous ovarian surface epithelia linking morphological normal monolayer to multilayer neoplastic cells were analyzed for the correlation of Tp53 pathway alteration in relation to morphological transformation, by immunostaining and sequencing of Tp53 gene in cells from laser captured microdissection.Consistent with previous reports, Tp53 staining is positive in 78% of the tumors. The staining of p21 is positive in about 12%, and HMD2 is positive in only 1% of the tumors. In 9 out of 10 cases of p21-positive tumors, p53 is also positive. In the majority of cases of epithelial histological transitions, overexpression of Tp53 correlates with morphological transformation: Tp53 is negative in monolayered cells and positive in neoplastic lesions. Morphological transformation also closely correlates with cell proliferation as indicated by Ki-67 staining and loss of p21 expression. We detected heterozygous mutation of Tp53 in the monolayers adjacent to neoplastic cells.p21 expression is an indicator of a wild type Tp53 and lack of p21 in the presence of Tp53 expression predicts an inactivated Tp53. Tp53 inactivation immediately precedes morphological transformation of the ovarian surface epithelium in most cases, and the histological transitional epithelia containing a heterozygous Tp53 mutation are thus pre-neoplastic lesions. We propose that the loss of a second allele of Tp53 leading to the loss of p21 expression, and subsequent cell proliferation, compose a sequence of events that lead to morphological transformation and instigation of ovarian epithelial tumor development.
Project description:The Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs), including polycythemia vera (PV), essential thrombocythemia (ET), and the prefibrotic form of primary myelofibrosis (PMF), frequently progress to more overt forms of MF and a type of acute leukemia termed MPN-accelerated phase/blast phase (MPN-AP/BP). Recent evidence indicates that dysregulation of the tumor suppressor tumor protein p53 (TP53) commonly occurs in the MPNs. The proteins MDM2 and MDM4 alter the cellular levels of TP53. We investigated in 1,294 patients whether abnormalities involving chromosomes 1 and 12, which harbor the genes for MDM4 and MDM2, respectively, and chromosome 17, where the gene for TP53 is located, are associated with MPN disease progression. Gain of 1q occurred not only in individuals with MPN-BP but also in patients with PV and ET, who, with further follow-up, eventually evolve to either MF and/or MPN-BP. These gains of 1q were most prevalent in patients with a history of PV and those who possessed the JAK2V617F driver mutation. The gains of 1q were accompanied by increased transcript levels of MDM4 In contrast, 12q chromosomal abnormalities were exclusively detected in patients who presented with MF or MPN-BP, but were not accompanied by further increases in MDM2/MDM4 transcript levels. Furthermore, all patients with a loss of 17p13, which leads to a deletion of TP53, had either MF or MPN-AP/BP. These findings suggest that gain of 1q, as well as deletions of 17p, are associated with perturbations of the TP53 pathway, which contribute to MPN disease progression.
Project description:The insertion and deletion of U residues at specific sites in mRNAs in trypanosome mitochondria is thought to involve 3' terminal uridylyl transferase (TUTase) activity. TUTase activity is also required to create the nonencoded 3' oligo[U] tails of the transacting guide RNAs (gRNAs). We have described two TUTases, RET1 (RNA editing TUTase 1) and RET2 (RNA editing TUTase 2) as components of different editing complexes. Tandem affinity purification-tagged Trypanosoma brucei RET2 (TbRET2) was expressed and localized to the cytosol in Leishmania tarentolae cells by removing the mitochondrial signal sequence. Double-affinity isolation yielded tagged TbRET2, together with a few additional proteins. This material exhibits a U-specific transferase activity in which a single U is added to the 3' end of a single-stranded RNA, thereby confirming that RET2 is a 3' TUTase. We also found that RNA interference of RET2 expression in T. brucei inhibits in vitro U-insertion editing and has no effect on the length of the 3' oligo[U] tails of the gRNAs, whereas down-regulation of RET1 has a minor effect on in vitro U-insertion editing, but produces a decrease in the average length of the oligo[U] tails. This finding suggests that RET2 is responsible for U-insertions at editing sites and RET1 is involved in gRNA 3' end maturation, which is essential for creating functional gRNAs. From these results we have functionally relabeled the previously described TUT-II complex containing RET1 as the guide RNA processing complex.
Project description:We have analyzed a panel of 14 cases of childhood adrenocortical tumors unselected for family history and have identified germline TP53 mutations in >80%, making this the highest known incidence of a germline mutation in a tumor-suppressor gene in any cancer. The spectrum of germline TP53 mutations detected is remarkably limited. Analysis of tumor tissue for loss of constitutional heterozygosity, with respect to the germline mutant allele and the occurrence of other somatic TP53 mutations, indicates complex sequences of genetic events in a number of tumors. None of the families had cancer histories that conformed to the criteria for Li-Fraumeni syndrome, but, in some families, we were able to demonstrate that the mutation had been inherited. In these families there were gene carriers unaffected in their 40s and 50s, and there were others with relatively late-onset cancers. These data provide evidence that certain TP53 alleles confer relatively low penetrance for predisposition to the development of cancer, and they imply that deleterious TP53 mutations may be more frequent in the population than has been estimated previously. Our findings have considerable implications for the clinical management of children with andrenocortical tumors and their parents, in terms of both genetic testing and the early detection and treatment of tumors.
Project description:Methane monooxygenase (MMO) enzymes activate O2 for oxidation of methane. Two distinct MMOs exist in nature, a soluble form that uses a diiron active site (sMMO) and a membrane-bound form with a catalytic copper center (pMMO). Understanding the reaction mechanisms of these enzymes is of fundamental importance to biologists and chemists, and is also relevant to the development of new biocatalysts. The sMMO catalytic cycle has been elucidated in detail, including O2 activation intermediates and the nature of the methane-oxidizing species. By contrast, many aspects of pMMO catalysis remain unclear, most notably the nuclearity and molecular details of the copper active site. Here, we review the current state of knowledge for both enzymes, and consider pMMO O2 activation intermediates suggested by computational and synthetic studies in the context of existing biochemical data. Further work is needed on all fronts, with the ultimate goal of understanding how these two remarkable enzymes catalyze a reaction not readily achieved by any other metalloenzyme or biomimetic compound.
Project description:Since the 1970s, eight closely related serotypes of classical human astroviruses (HAstV) have been associated with gastrointestinal illness worldwide. In the late 2000s, three genetically unique human astrovirus clades, VA1-VA3, VA2-VA4, and MLB, were described. While the exact disease associated with these clades remains to be defined, VA1 has been associated with central nervous system infections. The discovery that VA1 could be grown in cell culture, supports exciting new studies aimed at understanding viral pathogenesis. Given the association of VA1 with often lethal CNS infections, we tested its susceptibility to the antimicrobial drug, nitazoxanide (NTZ), which we showed could inhibit classical HAstV infections. Our studies demonstrate that NTZ inhibited VA1 replication in Caco2 cells even when added at 12 h post-infection, which is later than in HAstV-1 infection. These data led us to further probe VA1 replication kinetics and cellular responses to infection in Caco-2 cells in comparison to the well-studied HAstV-1 strain. Overall, our studies highlight that VA1 replicates more slowly than HAstV-1 and elicits significantly different cellular responses, including the inability to disrupt cellular junctions and barrier permeability.
Project description:Structural comparisons between bacteriophage PRD1 and adenovirus have revealed an evolutionary relationship that has contributed significantly to current ideas on virus phylogeny. However, the structural organization of the receptor-binding spike complex and how the different symmetry mismatches are mediated between the spike-complex proteins are not clear. We determined the architecture of the PRD1 spike complex by using electron microscopy and three-dimensional image reconstruction of a series of PRD1 mutants. We constructed an atomic model for the full-length P5 spike protein by using comparative modeling. P5 was shown to be bound directly to the penton base protein P31. P5 and the receptor-binding protein P2 form two separate spikes, interacting with each other near the capsid shell. P5, with a tumor necrosis factor-like head domain, may have been responsible for host recognition before capture of the current receptor-binding protein P2.
Project description:Leigh syndrome is a rare, complex, and incurable early onset (typically infant or early childhood) mitochondrial disorder with both phenotypic and genetic heterogeneity. The heterogeneous nature of this disorder, based in part on the complexity of mitochondrial genetics, and the significant interactions between the nuclear and mitochondrial genomes has made it particularly challenging to research and develop therapies. This review article discusses some of the advances that have been made in the field to date. While the prognosis is poor with no current substantial treatment options, multiple studies are underway to understand the etiology, pathogenesis, and pathophysiology of Leigh syndrome. With advances in available research tools leading to a better understanding of the mitochondria in health and disease, there is hope for novel treatment options in the future.
Project description:Little is known about the genomic alterations in chordoma, with the exception of loss of SMARCB1, a core member of the SWI/SNF complex, in poorly differentiated chordomas. A TBXT duplication and rs2305089 polymorphism, located at 6q27, are known genetic susceptibility loci. A comprehensive genomic analysis of the nuclear and mitochondrial genomes in pediatric chordoma has not yet been reported. In this study, we performed WES and mtDNA genome sequencing on 29 chordomas from 23 pediatric patients. Findings were compared with that from whole-genome sequencing datasets of 80 adult patients with skull base chordoma. In the pediatric chordoma cohort, 81% of the somatic mtDNA mutations were observed in NADH complex genes, which is significantly enriched compared with the rest of the mtDNA genes (P = 0.001). In adult chordomas, mtDNA mutations were also enriched in the NADH complex genes (P < 0.0001). Furthermore, a progressive increase in heteroplasmy of nonsynonymous mtDNA mutations was noted in patients with multiple tumors (P = 0.0007). In the nuclear genome, rare likely germline in-frame indels in ARID1B, a member of the SWI/SNF complex located at 6q25.3, were observed in five pediatric patients (22%) and four patients in the adult cohort (5%). The frequency of rare ARID1B indels in the pediatric cohort is significantly higher than that in the adult cohort (P = 0.0236, Fisher's exact test), but they were both significantly higher than that in the ethnicity-matched populations (P < 5.9e-07 and P < 0.0001174, respectively). Implications: germline ARID1B indels and mtDNA aberrations seem important for chordoma genesis, especially in pediatric chordoma.