Project description:The photosynthetic amoeba, Paulinella provides a recent (ca. 120 Mya) example of primary plastid endosymbiosis. Given the extensive data demonstrating host lineage-driven endosymbiont integration, we analysed nuclear genome and transcriptome data to investigate mechanisms that may have evolved in Paulinella micropora KR01 (hereinafter, KR01) to maintain photosynthetic function in the novel organelle, the chromatophore. The chromatophore is of α-cyanobacterial provenance and has undergone massive gene loss due to Muller's ratchet, but still retains genes that encode the ancestral α-carboxysome and the shell carbonic anhydrase, two critical components of the biophysical CO2 concentrating mechanism (CCM) in cyanobacteria. We identified KR01 nuclear genes potentially involved in the CCM that arose via duplication and divergence and are upregulated in response to high light and downregulated under elevated CO2. We speculate that these genes may comprise a novel CO2 delivery system (i.e., a biochemical CCM) to promote the turnover of the RuBisCO carboxylation reaction and counteract photorespiration. We posit that KR01 has an inefficient photorespiratory system that cannot fully recycle the C2 product of RuBisCO oxygenation back to the Calvin-Benson cycle. Nonetheless, both these systems appear to be sufficient to allow Paulinella to persist in environments dominated by faster-growing phototrophs.
Project description:Free-living amoebae are described as potential reservoirs for pathogenic bacteria in the environment. It has been hypothesized that this might be the case for Mycobacterium avium subsp. paratuberculosis, the bacterium responsible for paratuberculosis. In a previous work, we isolated an amoeba from a water sample in the environment of infected cattle and showed that this amoeba was associated with Mycobacterium avium subsp. paratuberculosis. While a partial 18S rRNA gene has allowed us to suggest that this amoeba was Rosculus-like, at that time we were not able to sub-cultivate it. In the present study, we succeeded in cultivating this strain at 20-25°C. This amoeba is among the smallest (5-7 μm) described. The sequencing of the whole genome allowed us to extract the full 18S rRNA gene and propose this strain as a new species of the Rosculus genus, i.e., R. vilicus. Of note, the mitochondrial genome is particularly large (184,954 bp). Finally, we showed that this amoeba was able to phagocyte Mycobacterium avium subsp. paratuberculosis and that the bacterium was still observed within amoebae after at least 3 days. In conclusion, we characterized a new environmental amoeba species at the cellular and genome level that was able to interact with Mycobacterium avium subsp. paratuberculosis. As a result, R. vilicus is a potential candidate as environmental reservoir for Mycobacterium avium subsp. paratuberculosis but further experiments are needed to test this hypothesis.
Project description:Paulinella micropora is a rhizarian thecate amoeba, belonging to a photosynthetic Paulinella species group that has a unique organelle termed chromatophore, whose cyanobacterial origin is distinct from that of plant and algal chloroplasts. Because acquisition of the chromatophore was quite a recent event compared with that of the chloroplast ancestor, the Paulinella species are thought to be model organisms for studying the early process of primary endosymbiosis. To obtain insight into how endosymbiotically transferred genes acquire expression competence in the host nucleus, here we analyzed the 5' end sequences of the mRNAs of P. micropora MYN1 strain with the aid of a cap-trapper cDNA library. As a result, we found that mRNAs of 27 genes, including endosymbiotically transferred genes, possessed the common 5' end sequence of 28-33 bases that were posttranscriptionally added by spliced leader (SL) trans-splicing. We also found two subtypes of SL RNA genes encoded by the P. micropora MYN1 genome. Differing from the other SL trans-splicing organisms that usually possess poly(A)-less SL RNAs, this amoeba has polyadenylated SL RNAs. In this study, we characterize the SL trans-splicing of this unique organism and discuss the putative merits of SL trans-splicing in functional gene transfer and genome evolution.
Project description:The chromatophores in Paulinella are evolutionary-early-stage photosynthetic organelles. Biological processes in chromatophores depend on a combination of chromatophore and nucleus-encoded proteins. Interestingly, besides proteins carrying chromatophore-targeting signals, a large arsenal of short chromatophore-targeted proteins (sCTPs; <90 amino acids) without recognizable targeting signals were found in chromatophores. This situation resembles endosymbionts in plants and insects that are manipulated by host-derived antimicrobial peptides. Previously, we identified an expanded family of sCTPs of unknown function, named here "DNA-binding (DB)-sCTPs". DB-sCTPs contain a ~45 amino acid motif that is conserved in some bacterial proteins with predicted functions in DNA processing. Here, we explored antimicrobial activity, DNA-binding capacity, and structures of three purified recombinant DB-sCTPs. All three proteins exhibited antimicrobial activity against bacteria involving membrane permeabilization, and bound to bacterial lipids in vitro. A combination of in vitro assays demonstrated binding of recombinant DB-sCTPs to chromatophore-derived genomic DNA sequences with an affinity in the low nM range. Additionally, we report the 1.2 Å crystal structure of one DB-sCTP. In silico docking studies suggest that helix α2 inserts into the DNA major grove and the exposed residues, that are highly variable between different DB-sCTPs, confer interaction with the DNA bases. Identification of photosystem II subunit CP43 as a potential interaction partner of one DB-sCTP, suggests DB-sCTPs to be involved in more complex regulatory mechanisms. We hypothesize that membrane binding of DB-sCTPs is related to their import into chromatophores. Once inside, they interact with the chromatophore genome potentially providing nuclear control over genetic information processing.
Project description:N-terminal methionine excision (NME) and N-terminal acetylation (NTA) are two of the most common protein post-translational modifications. NME is a universally conserved activity and a highly specific mechanism across all life forms. NTA is very common in eukaryotes but occurs rarely in prokaryotes. By analyzing data sets from yeast, mammals and bacteria (including 112 million spectra from 57 bacterial species), the largest comparative proteogenomics study to date, it is shown that previous assumptions/perceptions about the specificity and purposes of NME are not entirely correct. Although NME, through the universal enzymatic specificity of the methionine aminopeptidases, results in the removal of the initiator Met in proteins when the second residue is Gly, Ala, Ser, Cys, Thr, Pro, or Val, the comparative genomic analyses suggest that this specificity may vary modestly in some organisms. In addition, the functional role of NME may be primarily to expose Ala and Ser rather than all seven of these residues. Although any of this group provide "stabilizing" N termini in the N-end rule, and de facto leave the remaining 13 amino acid types that are classed as "destabilizing" (in higher eukaryotes) protected by the initiator Met, the conservation of NME-substrate proteins through evolution suggests that the other five are not crucially important for proteins with these residues in the second position. They are apparently merely inconsequential players (their function is not affected by NME) that become exposed because their side chains are smaller or comparable to those of Ala and Ser. The importance of exposing mainly two amino acids at the N terminus, i.e. Ala and Ser, is unclear but may be related to NTA or other post-translational modifications. In this regard, these analyses also reveal that NTA is more prevalent in some prokaryotes than previously appreciated.
Project description:Protein O-glycosylation is important in numerous processes including the regulation of proteolytic processing sites by O-glycan masking in select newly synthesized proteins. To investigate O-glycan-mediated masking using an assay amenable to large-scale screens, we generated a fluorescent biosensor with an O-glycosylation site situated to mask a furin cleavage site. The sensor is activated when O-glycosylation fails to occur because furin cleavage releases a blocking domain allowing dye binding to a fluorogen activating protein. Thus, by design, glycosylation should block furin from activating the sensor only if it occurs first, which is predicted by the conventional view of Golgi organization. Indeed, and in contrast to the recently proposed rapid partitioning model, the sensor was non-fluorescent under normal conditions but became fluorescent when the Golgi complex was decompartmentalized. To test the utility of the sensor as a screening tool, cells expressing the sensor were exposed to a known inhibitor of O-glycosylation extension or siRNAs targeting factors known to alter glycosylation efficiency. These conditions activated the sensor substantiating its potential in identifying new inhibitors and cellular factors related to protein O-glycosylation. In summary, these findings confirm sequential processing in the Golgi, establish a new tool for studying the regulation of proteolytic processing by O-glycosylation, and demonstrate the sensor's potential usefulness for future screening projects.
Project description:Impaired proinsulin processing is observed in both type 1 and type 2 diabetes. We have previously shown that reductions in endoplasmic reticulum (ER) calcium (Ca2+) in the pancreatic β cell arising from impaired activity of the Sarcoendoplasmic Reticulum Ca2+ ATPase (SERCA) pump are associated with increased proinsulin secretion. However, the mechanisms responsible for reduced proinsulin processing in the context of SERCA2 deficiency remain incompletely understood. To test this, we developed mice with β cell specific SERCA2 deletion (βS2KO mice) and S2KO INS1 cells. βS2KO mice exhibited age-dependent glucose intolerance and reduced glucose-stimulated insulin secretion without evidence of impaired insulin sensitivity. ER Ca2+ levels in islets from βS2KO mice were significantly reduced, while serum proinsulin/insulin (PI/I) ratios and whole pancreas PI/I content were elevated. Immunoblot analysis of βS2KO islets and S2KO INS-1 cells revealed reduced active forms of the proinsulin processing enzymes, PC1/3, PC2 and CPE. Restoration of SERCA2b via adenoviral transduction in S2KO INS1 cells was sufficient to restore PC1/3 and PC2 maturation and enzyme activity. Brefeldin A treatment in INS1 cells recapitulated the impairments in PC1/3 and PC2 maturation observed in S2KO cells, suggesting a disturbance in protein trafficking between the ER and Golgi. Consistent with this, trafficking assays were performed using a vesicular stomatitis virus G (VSVG) protein construct and revealed a significantly slower rate of VSVG movement from the ER to the Golgi in S2KO INS1 cells. Moreover, pancreas sections from βS2KO mice showed increased co-localization of proinsulin and ProPC2 in the early compartments of the secretory pathway. Taken together, these data suggest that loss of SERCA2 activity and ER Ca2+ loss in the pancreatic β cell leads to impaired proinsulin processing via reduced maturation and trafficking of proinsulin processing enzymes.
Project description:Amelogenesis Imperfecta (AI) represents a group of hereditary conditions that manifest tooth enamel defects. Several causative mutations in the WDR72 gene have been identified and patients with WDR72 mutations have brown (or orange-brown) discolored enamel, rough enamel surface, early loss of enamel after tooth eruption, and severe attrition. Although the molecular function of WDR72 is not yet fully understood, a recent study suggested that WDR72 could be a facilitator of endocytic vesicle trafficking, which appears inconsistent with the previously reported cytoplasmic localization of WDR72. Therefore, the aims of our study were to investigate the tissues and cell lines in which WDR72 was expressed and to further determine the sub-cellular localization of WDR72. The expression of Wdr72 gene was investigated in mouse tissues and cell lines. Endogenous WDR72 protein was detected in the membranous fraction of ameloblast cell lines in addition to the cytosolic fraction. Sub-cellular localization studies supported our fractionation data, showing WDR72 at the Golgi apparatus, and to a lesser extent, in the cytoplasmic area. In contrast, a WDR72 AI mutant form that lacks its C-terminal region was exclusively detected in the cytoplasm. In addition, our studies identified a putative prenylation/CAAX motif within the last four amino acids of human WDR72 and generated a WDR72 variant, called CS mutant, in which the putative motif was ablated by a point mutation. Interestingly, mutation of the putative CAAX motif impaired WDR72 recruitment to the Golgi. Cell fractionation assays confirmed subcellular distribution of wild-type WDR72 in both cytosolic and membranous fractions, while the WDR72 AI mutant and CS mutant forms were predominantly detected in the cytosolic fraction. Our studies provide new insights into the subcellular localization of WDR72 and demonstrate a critical role for the C-terminal CAAX motif in regulating WDR72 recruitment to the Golgi. In accordance with structural modelling studies that classified WDR72 as a potential vesicle transport protein, our findings suggest a role for WDR72 in vesicular Golgi transport that may be key to understanding the underlying cause of AI.
Project description:RATIONALE:Proteins undergo post-translational modifications and proteolytic processing that can affect their biological function. Processing often involves the loss of single residues. Cleavage of signal peptides from the N-terminus is commonly associated with translocation. Recent reports have suggested that other processing sites also exist. METHODS:The secreted proteins from S. aureus N315 were precipitated with trichloroacetic acid (TCA) and amidinated with S-methyl thioacetimidate (SMTA). Amidinated proteins were digested with trypsin and analyzed with a high-resolution orbitrap mass spectrometer. RESULTS:Sixteen examples of Staphylococcus aureus secretory proteins that lose an N-terminal signal peptide during their export were identified using this amidination approach. The N-termini of proteins with and without methionine were identified. Unanticipated protein cleavages due to sortase and an unknown protease were also uncovered. CONCLUSIONS:A simple N-terminal amidination based mass spectrometry approach is described that facilitates identification of the N-terminus of a mature protein and the discovery of unexpected processing sites.
Project description:Norwalk virus is the prototype strain for members of the genus Norovirus in the family Caliciviridae, which are associated with epidemic gastroenteritis in humans. The nonstructural protein encoded in the N-terminal region of the first open reading frame (ORF1) of the Norwalk virus genome is analogous in gene order to proteins 2A and 2B of the picornaviruses; the latter is known for its membrane-associated activities. Confocal microscopy imaging of cells transfected with a vector plasmid that provided expression of the entire Norwalk virus N-terminal protein (amino acids 1 to 398 of the ORF1 polyprotein) showed colocalization of this protein with cellular proteins of the Golgi apparatus. Furthermore, this colocalization was characteristically associated with a visible disassembly of the Golgi complex into discrete aggregates. Deletion of a predicted hydrophobic region (amino acids 360 to 379) in a potential 2B-like (2BL) region (amino acids 301 to 398) near the C terminus of the Norwalk virus N-terminal protein reduced Golgi colocalization and disassembly. Confocal imaging was conducted to examine the expression characteristics of fusion proteins in which the 2BL region from the N-terminal protein of Norwalk virus (a genogroup I norovirus) or MD145 (a genogroup II norovirus) was fused to the C terminus of enhanced green fluorescent protein. Expression of each fusion protein in cells showed evidence for its colocalization with the Golgi apparatus. These data indicate that the N-terminal protein of Norwalk virus interacts with the Golgi apparatus and may play a 2BL role in the induction of intracellular membrane rearrangements associated with positive-strand RNA virus replication in cells.