Unknown

Dataset Information

0

Machine Learning-Based Texture Analysis in the Characterization of Cortisol Secreting vs. Non-Secreting Adrenocortical Incidentalomas in CT Scan.


ABSTRACT: New radioimaging techniques, exploiting the quantitative variables of imaging, permit to identify an hypothetical pathological tissue. We have applied this potential in a series of 72 adrenal incidentalomas (AIs) followed at our center, subdivided in functioning and non-functioning using laboratory findings. Each AI was studied in the preliminary non-contrast phase with a specific software (Mazda), surrounding a region of interest within each lesion. A total of 314 features were extrapolated. Mean and standard deviations of features were obtained and the difference in means between the two groups was statistically analyzed. Receiver Operating Characteristic (ROC) curves were used to identify an optimal cutoff for each variable and a prediction model was constructed via multivariate logistic regression with backward and stepwise selection. A 11-variable prediction model was constructed, and a ROC curve was used to differentiate patients with high probability of functioning AI. Using a threshold value of >-275.147, we obtained a sensitivity of 93.75% and a specificity of 100% in diagnosing functioning AI. On the basis of these results, computed tomography (CT) texture analysis appears a promising tool in the diagnostic definition of AIs.

SUBMITTER: Maggio R 

PROVIDER: S-EPMC9248203 | biostudies-literature | 2022

REPOSITORIES: biostudies-literature

altmetric image

Publications

Machine Learning-Based Texture Analysis in the Characterization of Cortisol Secreting vs. Non-Secreting Adrenocortical Incidentalomas in CT Scan.

Maggio Roberta R   Messina Filippo F   D'Arrigo Benedetta B   Maccagno Giacomo G   Lardo Pina P   Palmisano Claudia C   Poggi Maurizio M   Monti Salvatore S   Matarazzo Iolanda I   Laghi Andrea A   Pugliese Giuseppe G   Stigliano Antonio A  

Frontiers in endocrinology 20220617


New radioimaging techniques, exploiting the quantitative variables of imaging, permit to identify an hypothetical pathological tissue. We have applied this potential in a series of 72 adrenal incidentalomas (AIs) followed at our center, subdivided in functioning and non-functioning using laboratory findings. Each AI was studied in the preliminary non-contrast phase with a specific software (Mazda), surrounding a region of interest within each lesion. A total of 314 features were extrapolated. Me  ...[more]

Similar Datasets

2009-07-01 | GSE14922 | GEO
| S-EPMC8572764 | biostudies-literature
| S-EPMC6899893 | biostudies-literature
| S-EPMC7552922 | biostudies-literature
| S-EPMC5954705 | biostudies-literature
| S-EPMC10826395 | biostudies-literature
| S-EPMC4858057 | biostudies-literature
| S-EPMC9936246 | biostudies-literature
| S-EPMC8085195 | biostudies-literature
| S-EPMC3323898 | biostudies-literature