Unknown

Dataset Information

0

Adenine Base Editing In Vivo with a Single Adeno-Associated Virus Vector.


ABSTRACT: Base editors (BEs) have opened new avenues for the treatment of genetic diseases. However, advances in delivery approaches are needed to enable disease targeting of a broad range of tissues and cell types. Adeno-associated virus (AAV) vectors remain one of the most promising delivery vehicles for gene therapies. Currently, most BE/guide combinations and their promoters exceed the packaging limit (∼5 kb) of AAVs. Dual-AAV delivery strategies often require high viral doses that impose safety concerns. In this study, we engineered an adenine base editor (ABE) using a compact Cas9 from Neisseria meningitidis (Nme2Cas9). Compared with the well-characterized Streptococcus pyogenes Cas9-containing ABEs, ABEs using Nme2Cas9 (Nme2-ABE) possess a distinct protospacer adjacent motif (N4CC) and editing window, exhibit fewer off-target effects, and can efficiently install therapeutically relevant mutations in both human and mouse genomes. Importantly, we show that in vivo delivery of Nme2-ABE and its guide RNA by a single AAV vector can efficiently edit mouse genomic loci and revert the disease mutation and phenotype in an adult mouse model of tyrosinemia. We anticipate that Nme2-ABE, by virtue of its compact size and broad targeting range, will enable a range of therapeutic applications with improved safety and efficacy due in part to packaging in a single-vector system.

SUBMITTER: Zhang H 

PROVIDER: S-EPMC9258002 | biostudies-literature | 2022 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications


Base editors (BEs) have opened new avenues for the treatment of genetic diseases. However, advances in delivery approaches are needed to enable disease targeting of a broad range of tissues and cell types. Adeno-associated virus (AAV) vectors remain one of the most promising delivery vehicles for gene therapies. Currently, most BE/guide combinations and their promoters exceed the packaging limit (∼5 kb) of AAVs. Dual-AAV delivery strategies often require high viral doses that impose safety conce  ...[more]

Similar Datasets

| S-EPMC9652153 | biostudies-literature
| S-EPMC10495389 | biostudies-literature
| S-EPMC192305 | biostudies-other
| S-EPMC2929125 | biostudies-literature
| S-EPMC8825850 | biostudies-literature
| S-EPMC9675455 | biostudies-literature
| S-EPMC7004905 | biostudies-literature
| S-EPMC6980783 | biostudies-literature
| S-EPMC9947215 | biostudies-literature
| S-EPMC8352781 | biostudies-literature