Ontology highlight
ABSTRACT:
SUBMITTER: Hsieh TC
PROVIDER: S-EPMC9272356 | biostudies-literature | 2022 Mar
REPOSITORIES: biostudies-literature
Hsieh Tzung-Chien TC Bar-Haim Aviram A Moosa Shahida S Ehmke Nadja N Gripp Karen W KW Pantel Jean Tori JT Danyel Magdalena M Mensah Martin Atta MA Horn Denise D Rosnev Stanislav S Fleischer Nicole N Bonini Guilherme G Hustinx Alexander A Schmid Alexander A Knaus Alexej A Javanmardi Behnam B Klinkhammer Hannah H Lesmann Hellen H Sivalingam Sugirthan S Kamphans Tom T Meiswinkel Wolfgang W Ebstein Frédéric F Krüger Elke E Küry Sébastien S Bézieau Stéphane S Schmidt Axel A Peters Sophia S Engels Hartmut H Mangold Elisabeth E Kreiß Martina M Cremer Kirsten K Perne Claudia C Betz Regina C RC Bender Tim T Grundmann-Hauser Kathrin K Haack Tobias B TB Wagner Matias M Brunet Theresa T Bentzen Heidi Beate HB Averdunk Luisa L Coetzer Kimberly Christine KC Lyon Gholson J GJ Spielmann Malte M Schaaf Christian P CP Mundlos Stefan S Nöthen Markus M MM Krawitz Peter M PM
Nature genetics 20220210 3
Many monogenic disorders cause a characteristic facial morphology. Artificial intelligence can support physicians in recognizing these patterns by associating facial phenotypes with the underlying syndrome through training on thousands of patient photographs. However, this 'supervised' approach means that diagnoses are only possible if the disorder was part of the training set. To improve recognition of ultra-rare disorders, we developed GestaltMatcher, an encoder for portraits that is based on ...[more]