Project description:In order to obtain a global view of energy metabolism pathways of the sulfate-reducer Desulfovibrio vulgaris Hildenborough and the proteins involved therein whole-genome microarrays were used to compare the transcriptional response of cells grown with hydrogen/sulfate, pyruvate/sulfate, lactate/thiosulfate, and pyruvate with limiting sulfate, relative to growth in standard lactate/sulfate condition. Growth with hydrogen/sulfate showed the largest number of differently expressed genes and the largest changes in expression levels. The most up-regulated energy metabolism genes were those coding for the periplasmic [NiFeSe] hydrogenase, followed by the Ech hydrogenase, and the most down-regulated were genes coding for the Coo hydrogenase. The results point to the involvement of formate cycling and the ethanol pathway during growth on hydrogen, whereas there is evidence for CO cycling during growth on lactate and pyruvate, but not on H2. Growth with thiosulfate showed the hallmarks of a reduced energy status of the cells with down regulation of the ATP synthase and the Qmo and Dsr complexes., whereas growth with pyruvate showed the smallest differences but an increased role for the Ech hydrogenase.that in this case functions in reverse from the case of growth with H2. The multiple periplasmic hydrogenases and formate dehydrogenases, do not display the same regulation pattern showing that their metabolic roles are not totally interchangeable. This result together with the observation that several genes coding for proteins that have not been biochemically characterised were considerably affected in this study, reveals a more complex energy metabolism than previously considered and provides guidance for further studies. Keywords: Growth protocol
Project description:In order to obtain a global view of energy metabolism pathways of the sulfate-reducer Desulfovibrio vulgaris Hildenborough and the proteins involved therein whole-genome microarrays were used to compare the transcriptional response of cells grown with hydrogen/sulfate, pyruvate/sulfate, lactate/thiosulfate, and pyruvate with limiting sulfate, relative to growth in standard lactate/sulfate condition. Growth with hydrogen/sulfate showed the largest number of differently expressed genes and the largest changes in expression levels. The most up-regulated energy metabolism genes were those coding for the periplasmic [NiFeSe] hydrogenase, followed by the Ech hydrogenase, and the most down-regulated were genes coding for the Coo hydrogenase. The results point to the involvement of formate cycling and the ethanol pathway during growth on hydrogen, whereas there is evidence for CO cycling during growth on lactate and pyruvate, but not on H2. Growth with thiosulfate showed the hallmarks of a reduced energy status of the cells with down regulation of the ATP synthase and the Qmo and Dsr complexes., whereas growth with pyruvate showed the smallest differences but an increased role for the Ech hydrogenase.that in this case functions in reverse from the case of growth with H2. The multiple periplasmic hydrogenases and formate dehydrogenases, do not display the same regulation pattern showing that their metabolic roles are not totally interchangeable. This result together with the observation that several genes coding for proteins that have not been biochemically characterised were considerably affected in this study, reveals a more complex energy metabolism than previously considered and provides guidance for further studies. Keywords: Growth protocol Desulfovibrio vulgaris from our laboratory culture collection was cultured at 37°C with hydrogen as the only electron donor (with sulfate as the electron acceptor) to mid-log phase. Cultures were also cultivated similarly using lactate as the sole electron donor to mid-log phase. Gene expression profiles of cultures grown with hydrogen as the electron donor were compared with those of the cultures grown with lactate as the electron donor for sulfate reduction. Total RNA was harvested from four replicate cultures for microarray analysis. RNA extraction, purification, and labeling were performed independently on each cell sample.Two samples of each total RNA preparation were labeled, one with Cy3-dUTP and another with Cy5-dUTP for microarray hybridization (dye swap).
Project description:The direct CH-alkylation of indoles using carboxylic acids is presented for the first time. The catalytic system based on the combination of Co(acac)3 and 1,1,1-tris(diphenylphosphinomethyl)-ethane (Triphos, L1), in the presence of Al(OTf)3 as co-catalyst, is able to perform the reductive alkylation of 2-methyl-1H-indole with a wide range of carboxylic acids. The utility of the protocol was further demonstrated through the C3 alkylation of several substituted indole derivatives using acetic, phenylacetic or diphenylacetic acids. In addition, a careful selection of the reaction conditions allowed to perform the selective C3 alkenylation of some indole derivatives. Moreover, the alkenylation of C2 position of 3-methyl-1H-indole was also possible. Control experiments indicate that the aldehyde, in situ formed from the carboxylic acid hydrogenation, plays a central role in the overall process. This new protocol enables the direct functionalization of indoles with readily available and stable carboxylic acids using a non-precious metal based catalyst and hydrogen as reductant.
Project description:Quinones are important organic oxidants in a variety of synthetic and biological contexts, and they are susceptible to activation towards electron transfer through hydrogen bonding. Whereas this effect of hydrogen bond donors (HBDs) has been observed for Lewis basic, weakly oxidizing quinones, comparable activation is not readily achieved when more reactive and synthetically useful electron-deficient quinones are used. We have successfully employed HBD-coupled electron transfer as a strategy to activate electron-deficient quinones. A systematic investigation of HBDs has led to the discovery that certain dicationic HBDs have an exceptionally large effect on the rate and thermodynamics of electron transfer. We further demonstrate that these HBDs can be used as catalysts in a quinone-mediated model synthetic transformation.
Project description:Decarboxylative functionalization via hydrogen atom transfer offers an attractive alternative to standard redox approaches to this important class of transformations. Herein, we report a direct decarboxylative functionalization of aliphatic carboxylic acids using N-xanthylamides. The unique reactivity of amidyl radicals in hydrogen atom transfer enables decarboxylative xanthylation under redox-neutral conditions. This platform provides expedient access to a range of derivatives through subsequent elaboration of the xanthate group.
Project description:Nicotinamide adenine dinucleotide cofactor (NAD(P)H) is regarded as an important energy carrier and charge transfer mediator. Enzyme-catalyzed NADPH production in natural photosynthesis proceeds via a hydride transfer mechanism. Selective and effective regeneration of NAD(P)H from its oxidized form by artificial catalysts remains challenging due to the formation of byproducts. Herein, electrocatalytic NADH regeneration and the reaction mechanism on metal and carbon electrodes are studied. We find that the selectivity of bioactive 1,4-NADH is relatively high on Cu, Fe, and Co electrodes without forming commonly reported NAD2 byproducts. In contrast, more NAD2 side product is formed with the carbon electrode. ADP-ribose is confirmed to be a side product caused by the fragmentation reaction of NAD+. Based on H/D isotope effects and electron paramagnetic resonance analysis, it is proposed that the formation of NADH on these metal electrodes proceeds via a hydrogen atom-coupled electron transfer (HadCET) mechanism, in contrast to the direct electron-transfer and NAD˙ radical pathway on carbon electrodes, which leads to more by-product, NAD2. This work sheds light on the mechanism of electrocatalytic NADH regeneration, which is different from biocatalysis.
Project description:BackgroundC5-C8 medium-chain carboxylic acids are valuable chemicals as the precursors of various chemicals and transport fuels. However, only a few strict anaerobes have been discovered to produce them and their production is limited to low concentrations because of product toxicity. Therefore, a bacterial strain capable of producing high-titer C5-C8 carboxylic acids was strategically isolated and characterized for production of medium chain length carboxylic acids.ResultsHexanoic acid-producing anaerobes were isolated from the inner surface of a cattle rumen sample. One of the isolates, displaying the highest hexanoic acid production, was identified as Megasphaera sp. MH according to 16S rRNA gene sequence analysis. Megasphaera sp. MH metabolizes fructose and produces various medium-chain carboxylic acids, including hexanoic acid, in low concentrations. The addition of acetate to the fructose medium as an electron acceptor increased hexanoic acid production as well as cell growth. Supplementation of propionate and butyrate into the medium also enhanced the production of C5-C8 medium-chain carboxylic acids. Megasphaera sp. MH produced 5.7 g L(-1) of pentanoic acid (C5), 9.7 g L(-1) of hexanoic acid (C6), 3.2 g L(-1) of heptanoic acid (C7) and 1.2 g L(-1) of octanoic acid (C8) in medium supplemented with C2-C6 carboxylic acids as the electron acceptors. This is the first report on the production of high-titer heptanoic acid and octanoic acid using a pure anaerobic culture.ConclusionMegasphaera sp. MH metabolized fructose for the production of C2-C8 carbon-chain carboxylic acids using various electron acceptors and achieved a high-titer of 9.7 g L(-1) and fast productivity of 0.41 g L(-1) h(-1) for hexanoic acid. However, further metabolic activities of Megaspahera sp. MH for C5-C8 carboxylic acids production must be deciphered and improved for industrially relevant production levels.
Project description:The Doebner hydrogen-transfer reaction has been developed for the synthesis of substituted quinolines from anilines possessing electron-withdrawing groups, which are known to give products in low yields when used in the conventional Doebner reaction. This reaction can be applied to not only anilines having electron-withdrawing groups but also those having electron-donating groups and can be used in the large-scale synthesis of bioactive molecules.
Project description:Electron donor scarcity is seen as one of the major issues limiting economic production of medium-chain carboxylates from waste streams. Previous studies suggest that co-fermentation of hydrogen in microbial communities that realize chain elongation relieves this limitation. To better understand how hydrogen co-feeding can support chain elongation, we enriched three different microbial communities from anaerobic reactors (A, B, and C with ascending levels of diversity) for their ability to produce medium-chain carboxylates from conventional electron donors (lactate or ethanol) or from hydrogen. In the presence of abundant acetate and CO2, the effects of different abiotic parameters (pH values in acidic to neutral range, initial acetate concentration, and presence of chemical methanogenesis inhibitors) were tested along with the enrichment. The presence of hydrogen facilitated production of butyrate by all communities and improved production of i-butyrate and caproate by the two most diverse communities (B and C), accompanied by consumption of acetate, hydrogen, and lactate/ethanol (when available). Under optimal conditions, hydrogen increased the selectivity of conventional electron donors to caproate from 0.23 ± 0.01 mol e-/mol e- to 0.67 ± 0.15 mol e-/mol e- with a peak caproate concentration of 4.0 g L-1. As a trade-off, the best-performing communities also showed hydrogenotrophic methanogenesis activity by Methanobacterium even at high concentrations of undissociated acetic acid of 2.9 g L-1 and at low pH of 4.8. According to 16S rRNA amplicon sequencing, the suspected caproate producers were assigned to the family Anaerovoracaceae (Peptostreptococcales) and the genera Megasphaera (99.8% similarity to M. elsdenii), Caproiciproducens, and Clostridium sensu stricto 12 (97-100% similarity to C. luticellarii). Non-methanogenic hydrogen consumption correlated to the abundance of Clostridium sensu stricto 12 taxa (p < 0.01). If a robust methanogenesis inhibition strategy can be found, hydrogen co-feeding along with conventional electron donors can greatly improve selectivity to caproate in complex communities. The lessons learned can help design continuous hydrogen-aided chain elongation bioprocesses.
Project description:To develop a nicotinamide-independent single flavoenzyme system for the asymmetric bioreduction of C=C bonds, four types of hydrogen donor, encompassing more than 50 candidates, were investigated. Six highly potent, cheap, and commercially available co-substrates were identified that (under the optimized conditions) resulted in conversions and enantioselectivities comparable with, or even superior to, those obtained with traditional two-enzyme nicotinamide adenine dinucleotide phosphate (NAD(P)H)-recycling systems.