Project description:Volumetric additive manufacturing techniques are a promising pathway to ultra-rapid light-based 3D fabrication. Their widespread adoption, however, demands significant improvement in print fidelity. Currently, volumetric additive manufacturing prints suffer from systematic undercuring of fine features, making it impossible to print objects containing a wide range of feature sizes, precluding effective adoption in many applications. Here, we uncover the reason for this limitation: light dose spread in the resin due to chemical diffusion and optical blurring, which becomes significant for features ⪅0.5 mm. We develop a model that quantitatively predicts the variation of print time with feature size and demonstrate a deconvolution method to correct for this error. This enables prints previously beyond the capabilities of volumetric additive manufacturing, such as a complex gyroid structure with variable thickness and a fine-toothed gear. These results position volumetric additive manufacturing as a mature 3D printing method, all but eliminating the gap to industry-standard print fidelity.
Project description:The propensity to manufacture functional and geometrically sophisticated parts from a wide range of metals provides the metal additive manufacturing (AM) processes superior advantages over traditional methods. The field of metal AM is currently dominated by beam-based technologies such as selective laser sintering (SLM) or electron beam melting (EBM) which have some limitations such as high production cost, residual stress and anisotropic mechanical properties induced by melting of metal powders followed by rapid solidification. So, there exist a significant gap between industrial production requirements and the qualities offered by well-established beam-based AM technologies. Therefore, beamless metal AM techniques (known as non-beam metal AM) have gained increasing attention in recent years as they have been found to be able to fill the gap and bring new possibilities. There exist a number of beamless processes with distinctively various characteristics that are either under development or already available on the market. Since this is a very promising field and there is currently no high-quality review on this topic yet, this paper aims to review the key beamless processes and their latest developments.
Project description:Polyacrylamide hydrogels can be used as chemically and physically defined substrates for bacterial cell culture, and enable studies of the influence of surfaces on cell growth and behaviour.
Project description:The proliferation of computer-aided design and additive manufacturing enables on-demand fabrication of complex, three-dimensional structures. However, combining the versatility of cell-laden hydrogels within the 3D printing process remains a challenge. Herein, we describe a facile and versatile method that integrates polymer networks (including hydrogels) with 3D-printed mechanical supports to fabricate multicomponent (bio)materials. The approach exploits surface tension to coat fenestrated surfaces with suspended liquid films that can be transformed into solid films. The operating parameters for the process are determined using a physical model, and complex geometric structures are successfully fabricated. We engineer, by tailoring the window geometry, scaffolds with anisotropic mechanical properties that compress longitudinally (~30% strain) without damaging the hydrogel coating. Finally, the process is amenable to high cell density encapsulation and co-culture. Viability (>95%) was maintained 28 days after encapsulation. This general approach can generate biocompatible, macroscale devices with structural integrity and anisotropic mechanical properties.
Project description:Several 3D light-based printing technologies have been developed that rely on the photopolymerization of liquid resins. A recent method, so-called Tomographic Volumetric Additive Manufacturing, allows the fabrication of microscale objects within tens of seconds without the need for support structures. This method works by projecting intensity patterns, computed via a reverse tomography algorithm, into a photocurable resin from different angles to produce a desired 3D shape when the resin reaches the polymerization threshold. Printing using incoherent light patterning has been previously demonstrated. In this work, we show that a light engine with holographic phase modulation unlocks new potential for volumetric printing. The light projection efficiency is improved by at least a factor 20 over amplitude coding with diffraction-limited resolution and its flexibility allows precise light control across the entire printing volume. We show that computer-generated holograms implemented with tiled holograms and point-spread-function shaping mitigates the speckle noise which enables the fabrication of millimetric 3D objects exhibiting negative features of 31 μm in less than a minute with a 40 mW light source in acrylates and scattering materials, such as soft cell-laden hydrogels, with a concentration of 0.5 million cells per mL.
Project description:Although additive manufacturing (AM), or three dimensional (3D) printing, provides significant advantages over existing manufacturing techniques, metallic parts produced by AM are susceptible to distortion, lack of fusion defects and compositional changes. Here we show that the printability, or the ability of an alloy to avoid these defects, can be examined by developing and testing appropriate theories. A theoretical scaling analysis is used to test vulnerability of various alloys to thermal distortion. A theoretical kinetic model is used to examine predisposition of different alloys to AM induced compositional changes. A well-tested numerical heat transfer and fluid flow model is used to compare susceptibilities of various alloys to lack of fusion defects. These results are tested and validated with independent experimental data. The findings presented in this paper are aimed at achieving distortion free, compositionally sound and well bonded metallic parts.
Project description:In recent years, 3D printing technologies have been extensively developed, enabling rapid prototyping from a conceptual design to an actual product. However, additive manufacturing of metals in the existing technologies is still cost-intensive and time-consuming. Herein a novel platform for low-cost additive manufacturing is introduced by simultaneously combining the laser-induced forward transfer (LIFT) method with photochemical reaction. Using acrylonitrile butadiene styrene (ABS) polymer as the sacrificial layer, sufficient ejection momentum can be generated in the LIFT method. A low-cost continuous wave (CW) laser diode at 405 nm was utilized and proved to be able to transfer the photochemically synthesized copper onto the target substrate. The wavelength-dependent photochemical behaviour in the LIFT method was verified and characterized by both theoretical and experimental studies compared to 1064 nm fiber laser. The conductivity of the synthesized copper patterns could be enhanced using post electroless plating while retaining the designed pattern shapes. Prototypes of electronic circuits were accordingly built and demonstrated for powering up LEDs. Apart from pristine PDMS materials with low surface energies, the proposed method can simultaneously perform laser-induced forward transfer and photochemical synthesis of metals, starting from their metal oxide forms, onto various target substrates such as polyimide, glass and thermoplastics.
Project description:The development of chemistry is reported to implement selective dual-wavelength olefin metathesis polymerization for continuous additive manufacturing (AM). A resin formulation based on dicyclopentadiene is produced using a latent olefin metathesis catalyst, various photosensitizers (PSs) and photobase generators (PBGs) to achieve efficient initiation at one wavelength (e.g., blue light) and fast catalyst decomposition and polymerization deactivation at a second (e.g., UV-light). This process enables 2D stereolithographic (SLA) printing, either using photomasks or patterned, collimated light. Importantly, the same process is readily adapted for 3D continuous AM, with printing rates of 36 mm h-1 for patterned light and up to 180 mm h-1 using un-patterned, high intensity light.
Project description:In tomographic volumetric additive manufacturing, an entire three-dimensional object is simultaneously solidified by irradiating a liquid photopolymer volume from multiple angles with dynamic light patterns. Though tomographic additive manufacturing has the potential to produce complex parts with a higher throughput and a wider range of printable materials than layer-by-layer additive manufacturing, its resolution currently remains limited to 300 µm. Here, we show that a low-étendue illumination system enables the production of high-resolution features. We further demonstrate an integrated feedback system to accurately control the photopolymerization kinetics over the entire build volume and improve the geometric fidelity of the object solidification. Hard and soft centimeter-scale parts are produced in less than 30 seconds with 80 µm positive and 500 µm negative features, thus demonstrating that tomographic additive manufacturing is potentially suitable for the ultrafast fabrication of advanced and functional constructs.
Project description:Efforts to understand and engineer cell behavior in mechanically soft environments frequently employ two-dimensional cell culture substrates consisting of thin hydrogel layers with low elastic modulus supported on rigid substrates to facilitate culturing, imaging, and analysis. Here we characterize how an elastic creasing instability of the gel surface may occur for the most widely used soft cell culture substrate, polyacrylamide hydrogels, and show that stem cells respond to and change their behavior due to these surface features. The regions of stability and corresponding achievable ranges of modulus are elucidated in terms of the monomer and cross-linker concentrations, providing guidance for the synthesis of both smooth and creased soft cell substrates for basic and applied cell engineering efforts.