Project description:The potential of the culturable bacterial community from an Alpine coniferous forest site for the degradation of organic polymers and pollutants at low (5 °C) and moderate (20 °C) temperatures was evaluated. The majority of the 68 strains belonged to the phylum Proteobacteria (77%). Other strains were related to Bacteroidetes (12%), Alphaproteobacteria (4%), Actinobacteria (3%), and Firmicutes (3%). The strains were grouped into 42 different OTUs. The highest bacterial diversity was found within the phylum Bacteroidetes. All strains, except one, could grow at temperatures from 5 to 25 °C. The production of enzyme activities involved in the degradation of organic polymers present in plant litter (carboxymethyl cellulose, microgranular cellulose, xylan, polygalacturonic acid) was almost comparable at 5 °C (68%) and 20 °C (63%). Utilizers of lignin compounds (lignosulfonic acid, lignin alkali) as sole carbon source were found to a higher extent at 20 °C (57%) than at 5 °C (24%), but the relative fractions among positively tested strains utilizing these compounds were almost identical at the two temperatures. Similar results were noted for utilizers of organic pollutants (n-hexadecane, diesel oil, phenol, glyphosate) as sole carbon source. More than two-thirds showed constitutively expressed catechol-1,2-dioxygenase activity both at 5 °C (74%) and 20 °C (66%). Complete phenol (2.5 mmol/L) degradation by strain Paraburkholderia aromaticivorans AR20-38 was demonstrated at 0-30 °C, amounts up to 7.5 mmol/L phenol were fully degraded at 10-30 °C. These results are useful to better understand the effect of changing temperatures on microorganisms involved in litter degradation and nutrient turnover in Alpine forest soils.
Project description:The tri-functional purpose of Microbial Desalination Cell (MDC) has shown a great promise in our current scarcity of water, an increase in water pollution and the high cost of electricity production. As a biological system, the baseline force that drives its performance is the presence of exoelectrogens in the anode chamber. Their presence in the anodic chamber of MDC systems enables the treatment of water, desalination of seawater, and the production of electrical energy. This study reviews the characteristics of exoelectrogens, as a driving force in MDC and examines factors which influence their growth and the performance efficiency of MDC systems. It also addresses the efficiency of mixed cultures with certain predominant species as compared to pure cultures used in MDC systems. Furthermore, the study suggests the need to genetically modify certain predominant strains in mixed cultures to enhance their performance in COD removal, desalination and power output and the integration of MDC with other technologies for cost-effective processes.
Project description:A bacterium designated Pseudonocardia sp. strain ENV478 was isolated by enrichment culturing on tetrahydrofuran (THF) and was screened to determine its ability to degrade a range of ether pollutants. After growth on THF, strain ENV478 degraded THF (63 mg/h/g total suspended solids [TSS]), 1,4-dioxane (21 mg/h/g TSS), 1,3-dioxolane (19 mg/h/g TSS), bis-2-chloroethylether (BCEE) (12 mg/h/g TSS), and methyl tert-butyl ether (MTBE) (9.1 mg/h/g TSS). Although the highest rates of 1,4-dioxane degradation occurred after growth on THF, strain ENV478 also degraded 1,4-dioxane after growth on sucrose, lactate, yeast extract, 2-propanol, and propane, indicating that there was some level of constitutive degradative activity. The BCEE degradation rates were about threefold higher after growth on propane (32 mg/h/g TSS) than after growth on THF, and MTBE degradation resulted in accumulation of tert-butyl alcohol. Degradation of 1,4-dioxane resulted in accumulation of 2-hydroxyethoxyacetic acid (2HEAA). Despite its inability to grow on 1,4-dioxane, strain ENV478 degraded this compound for > 80 days in aquifer microcosms. Our results suggest that the inability of strain ENV478 and possibly other THF-degrading bacteria to grow on 1,4-dioxane is related to their inability to efficiently metabolize the 1,4-dioxane degradation product 2HEAA but that strain ENV478 may nonetheless be useful as a biocatalyst for remediating 1,4-dioxane-contaminated aquifers.
Project description:Graphene oxide (GO) is reduced by certain exoelectrogenic bacteria, but its effects on bacterial growth and metabolism are a controversial issue. This study aimed to determine whether GO functions as the terminal electron acceptor to allow specific growth of and electricity production by exoelectrogenic bacteria. Cultivation of environmental samples with GO and acetate as the sole substrate could specifically enrich exoelectrogenic bacteria with Geobacter species predominating (51-68% of the total populations). Interestingly, bacteria in these cultures self-aggregated into a conductive hydrogel complex together with biologically reduced GO (rGO). A novel GO-respiring bacterium designated Geobacter sp. strain R4 was isolated from this hydrogel complex. This organism exhibited stable electricity production at >1000 μA/cm(3) (at 200 mV vs Ag/AgCl) for more than 60 d via rGO while temporary electricity production using graphite felt. The better electricity production depends upon the characteristics of rGO such as a large surface area for biofilm growth, greater capacitance, and smaller internal resistance. This is the first report to demonstrate GO-dependent growth of exoelectrogenic bacteria while forming a conductive hydrogel complex with rGO. The simple put-and-wait process leading to the formation of hydrogel complexes of rGO and exoelectrogens will enable wider applications of GO to bioelectrochemical systems.
Project description:The performance of isolated designed consortia comprising Bacillus pumilus, Brevibacterium sp, and Pseudomonas aeruginosa for the treatment of sewage wastewater in terms of reduction in COD (chemical oxygen demand), BOD (biochemical oxygen demand) MLSS (mixed liquor suspended solids), and TSS (total suspended solids) was studied. Different parameters were optimized (inoculum size, agitation, and temperature) to achieve effective results in less period of time. The results obtained indicated that consortium in the ratio of 1 : 2 (effluent : biomass) at 200 rpm, 35°C is capable of effectively reducing the pollutional load of the sewage wastewaters, in terms of COD, BOD, TSS, and MLSS within the desired discharge limits, that is, 32 mg/L, 8 mg/L, 162 mg/L, and 190 mg/L. The use of such specific consortia can overcome the inefficiencies of the conventional biological treatment facilities currently operational in sewage treatment plants.
Project description:Biodegradation of cyromazine was investigated in liquid cultures using three melamine-degrading bacteria Arthrobacter sp. MCO, Arthrobacter sp. CSP and Nocardioides sp. ATD6. Experiments were performed aerobically in a mineral medium with glucose as a carbon source and cyromazine as the sole nitrogen source. All three strains of bacteria degraded cyromazine. Cyromazine at 23 mg/L completely disappeared by Arthrobacter sp. MCO within 7 days. The bacterial density of all three strains increased with degradation of the cyromazine. The cyromazine metabolite N-cyclopropylammeline was detected and identified by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). This is the first report on the use of Arthrobacter sp. and Nocardioides sp. for cyromazine degradation and the occurrence of bacterial growth with cyromazine degradation.
Project description:In farmlands, most electronic devices have no connection to a power source and have to work on batteries. To explore paddy soil as an in situ power source, herein, we in the present study constructed sediment microbial fuel cells (SMFCs) in paddy soil. An open circuit voltage of 1.596 V and a maximum power density of 29.42 mWm-2 were obtained by serially connecting three SMFCs. Electrochemical impedance spectroscopy showed that the internal resistance which comprised ohmic resistance and anodic and cathodic charge transfer resistance was approximately 400 Ω for each of the three individual SMFCs. We used the serially connected SMFCs to power an electronic timer through a 1 F capacitor. The SMFCs had powered the timer for 80 h until the potential of the SMFCs dropped below 0.936 V. Then, RNA was extracted from anode samples and 16S rRNA was sequenced following reverse transcription. The results showed that the relative abundance of active exoelectrogenic bacteria-associated genera on the anode was 13.03%, 27.78%, and 16.17% for the three SMFCs with Geobacter and Anaeromyxobacter being the dominant genera. Our findings provide the possibility of powering electronic devices in the field by using soil as a power source.
Project description:Microorganisms capable of generating electricity in microbial fuel cells (MFCs) have gained increasing interest. Here fourteen exoelectrogenic bacterial strains were isolated from the anodic biofilm in an MFC before and after copper (Cu) shock load by Hungate roll-tube technique with solid ferric (III) oxide as an electron acceptor and acetate as an electron donor. Phylogenetic analysis of the 16S rRNA gene sequences revealed that they were all closely related to Enterobacter ludwigii DSM 16688T within the Enterobacteriaceae family, although these isolated bacteria showed slightly different morphology before and after Cu shock load. Two representative strains R2B1 (before Cu shock load) and B4B2 (after Cu shock load) were chosen for further analysis. B4B2 is resistant to 200 mg L-1 of Cu(II) while R2B1 is not, which indicated the potential selection of the Cu shock load. Raman analysis revealed that both R2B1 and B4B2 contained c-type cytochromes. Cyclic voltammetry measurements revealed that strain R2B1 had the capacity to transfer electrons to electrodes. The experimental results demonstrated that strain R2B1 was capable of utilizing a wide range of substrates, including Luria-Bertani (LB) broth, cellulose, acetate, citrate, glucose, sucrose, glycerol and lactose to generate electricity, with the highest current density of 440 mA·m-2 generated from LB-fed MFC. Further experiments indicated that the bacterial cell density had potential correlation with the current density.
Project description:In a microbial fuel cell (MFC), exoelectrogens, which transfer electrons to the electrode, have been regarded as a key factor for electricity generation. In this study, U-tube MFC and plating methods were used to isolate exoelectrogens from the anode of an MFC. Disparate microorganisms were identified depending on isolation methods, despite the use of an identical source. Denaturing gel gradient electrophoresis (DGGE) analysis showed that certain microorganisms became dominant in the U-tube MFC. The predominant bacterium was similar to Ochrobactrum sp., belonging to the Alphaproteobacteria, which was shown to be able to function as an exoelectrogen in a previous study. Three isolates, one affiliated with Bacillus sp. and two with Paenibacillus sp., were identified using the plating method, which belonged to the Gram-positive bacteria, the Firmicutes. The U-tube MFCs were inoculated with the three isolates using the plating method, operated in the batch mode and the current was monitored. All of the U-tube MFCs inoculated with each isolate after isolation from plates produced lower current (peak current density: 3.6-16.3 mA/m(2)) than those in U-tube MFCs with mixed culture (48.3-62.6 mA/m(2)). Although the isolates produced low currents, various bacterial groups were found to be involved in current production.