Unknown

Dataset Information

0

Quantitative Assessment of Ligand Substituent Effects on σ- and π-Contributions to Fe-N Bonds in Spin Crossover FeII Complexes.


ABSTRACT: The effect of para-substituent X on the electronic structure of sixteen tridentate 4-X-(2,6-di(pyrazol-1-yl))-pyridine (bppX ) ligands and the corresponding solution spin crossover [FeII (bppX )2 ]2+ complexes is analysed further, to supply quantitative insights into the effect of X on the σ-donor and π-acceptor character of the Fe-NA (pyridine) bonds. EDA-NOCV on the sixteen LS complexes revealed that neither ΔEorb,σ+π (R2 =0.48) nor ΔEorb,π (R2 =0.31) correlated with the experimental solution T1/2 values (which are expected to reflect the ligand field imposed on the iron centre), but that ΔEorb,σ correlates well (R2 =0.82) and implies that as X changes from EDG→EWG (Electron Donating to Withdrawing Group), the ligand becomes a better σ-donor. This counter-intuitive result was further probed by Mulliken analysis of the NA atomic orbitals: NA (px ) involved in the Fe-N σ-bond vs. the perpendicular NA (pz ) employed in the ligand aromatic π-system. As X changes EDG→EWG, the electron population on NA (pz ) decreases, making it a better π-acceptor, whilst that in NA (px ) increases, making it a better σ-bond donor; both increase ligand field, and T1/2 as observed. In 2016, Halcrow, Deeth and co-workers proposed an intuitively reasonable explanation of the effect of the para-X substituents on the T1/2 values in this family of complexes, consistent with the calculated MO energy levels, that M→L π-backdonation dominates in these M-L bonds. Here the quantitative EDA-NOCV analysis of the M-L bond contributions provides a more complete, coherent and detailed picture of the relative impact of M-L σ-versus π-bonding in determining the observed T1/2 , refining the earlier interpretation and revealing the importance of the σ-bonding. Furthermore, our results are in perfect agreement with the ΔE(HS-LS) vs. σp + (X) correlation reported in their work.

SUBMITTER: Bondi L 

PROVIDER: S-EPMC9310619 | biostudies-literature | 2022 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Quantitative Assessment of Ligand Substituent Effects on σ- and π-Contributions to Fe-N Bonds in Spin Crossover Fe<sup>II</sup> Complexes.

Bondì Luca L   Garden Anna L AL   Totti Federico F   Jerabek Paul P   Brooker Sally S  

Chemistry (Weinheim an der Bergstrasse, Germany) 20220321 22


The effect of para-substituent X on the electronic structure of sixteen tridentate 4-X-(2,6-di(pyrazol-1-yl))-pyridine (bpp<sup>X</sup> ) ligands and the corresponding solution spin crossover [Fe<sup>II</sup> (bpp<sup>X</sup> )<sub>2</sub> ]<sup>2+</sup> complexes is analysed further, to supply quantitative insights into the effect of X on the σ-donor and π-acceptor character of the Fe-N<sub>A</sub> (pyridine) bonds. EDA-NOCV on the sixteen LS complexes revealed that neither ΔE<sub>orb,σ+π</sub>  ...[more]

Similar Datasets

| S-EPMC9063550 | biostudies-literature
| S-EPMC4544320 | biostudies-literature
| S-EPMC7499118 | biostudies-literature
| S-EPMC6645327 | biostudies-literature
| S-EPMC8179063 | biostudies-literature
| S-EPMC9129067 | biostudies-literature
| S-EPMC9034036 | biostudies-literature
| S-EPMC8159330 | biostudies-literature
| S-EPMC6678756 | biostudies-literature
| S-EPMC11696508 | biostudies-literature