Project description:This study investigates thoroughly whether acute exposure to outdoor PM2.5 concentration, P, modifies the rate of change in the daily number of COVID-19 infections (R) across 18 high infection provincial capitals in China, including Wuhan. A best-fit multiple linear regression model was constructed to model the relationship between P and R, from 1 January to 20 March 2020, after accounting for meteorology, net move-in mobility (NM), time trend (T), co-morbidity (CM), and the time-lag effects. Regression analysis shows that P (β = 0.4309, p < 0.001) is the most significant determinant of R. In addition, T (β = -0.3870, p < 0.001), absolute humidity (AH) (β = 0.2476, p = 0.002), P × AH (β = -0.2237, p < 0.001), and NM (β = 0.1383, p = 0.003) are more significant determinants of R, as compared to GDP per capita (β = 0.1115, p = 0.015) and CM (Asthma) (β = 0.1273, p = 0.005). A matching technique was adopted to demonstrate a possible causal relationship between P and R across 18 provincial capital cities. A 10 µg/m3 increase in P gives a 1.5% increase in R (p < 0.001). Interaction analysis also reveals that P × AH and R are negatively correlated (β = -0.2237, p < 0.001). Given that P exacerbates R, we recommend the installation of air purifiers and improved air ventilation to reduce the effect of P on R. Given the increasing observation that COVID-19 is airborne, measures that reduce P, plus mandatory masking that reduces the risks of COVID-19 associated with viral-particulate transmission, are strongly recommended. Our study is distinguished by the focus on the rate of change instead of the individual cases of COVID-19 when modelling the statistical relationship between R and P in China; causal instead of correlation analysis via the matching analysis, while taking into account the key confounders, and the individual plus the interaction effects of P and AH on R.
Project description:Using satellite-based aerosol optical depth (AOD) measurements and statistical models to estimate ground-level PM2.5 is a promising way to fill the areas that are not covered by ground PM2.5 monitors. The statistical models used in previous studies are primarily Linear Mixed Effects (LME) and Geographically Weighted Regression (GWR) models. In this study, we developed a new regression model between PM2.5 and AOD using Gaussian processes in a Bayesian hierarchical setting. Gaussian processes model the stochastic nature of the spatial random effects, where the mean surface and the covariance function is specified. The spatial stochastic process is incorporated under the Bayesian hierarchical framework to explain the variation of PM2.5 concentrations together with other factors, such as AOD, spatial and non-spatial random effects. We evaluate the results of our model and compare them with those of other, conventional statistical models (GWR and LME) by within-sample model fitting and out-of-sample validation (cross validation, CV). The results show that our model possesses a CV result (R2 = 0.81) that reflects higher accuracy than that of GWR and LME (0.74 and 0.48, respectively). Our results indicate that Gaussian process models have the potential to improve the accuracy of satellite-based PM2.5 estimates.
Project description:The spatial disparity of air pollutants is one of the key influential factors for environmental inequality. We quantitatively evaluated the evolution of PM2.5 spatial disparity in China during 2013-2020, and investigated the associations between PM2.5 spatial disparity and economic indicators. Differences in PM2.5 between more- and less-polluted cities declined over time, suggesting decreased absolute disparity. However, the more polluted cities in 2013 remained so in 2017 and 2020, and vice versa, indicating persistent relative disparity. PM2.5 pollution levels increased with higher GDP per capita in less-developed areas of China, but such negative effects weakened over time, while economic development tended to promote cleaner air in developed areas of China. Therefore, policies to improve air quality and promote economic development simultaneously are needed in China to reduce the disparity of air pollution and promote all people to enjoy environmental equality.
Project description:Due to the transboundary nature of air pollutants, a province's efforts to improve air quality can reduce PM2.5 concentration in the surrounding area. The inter-provincial PM2.5 pollution transport could bring great challenges to related environmental management work, such as financial fund allocation and subsidy policy formulation. Herein, we examined the transport characteristics of PM2.5 pollution across provinces in 2013 and 2020 via chemical transport modeling and then monetized inter-provincial contributions of PM2.5 improvement based on pollutant emission control costs. We found that approximately 60% of the PM2.5 pollution was from local sources, while the remaining 40% originated from outside provinces. Furthermore, about 1011 billion RMB of provincial air pollutant abatement costs contributed to the PM2.5 concentration decline in other provinces during 2013-2020, accounting for 41.2% of the total abatement costs. Provinces with lower unit improvement costs for PM2.5, such as Jiangsu, Hebei, and Shandong, were major contributors, while Guangdong, Guangxi, and Fujian, bearing higher unit costs, were among the main beneficiaries. Our study identifies provinces that contribute to air quality improvement in other provinces, have high economic efficiency, and provide a quantitative framework for determining inter-provincial compensations. This study also reveals the uneven distribution of pollution abatement costs (PM2.5 improvement/abatement costs) due to transboundary PM2.5 transport, calling for adopting inter-provincial economic compensation policies. Such mechanisms ensure equitable cost-sharing and effective regional air quality management.
Project description:Aerosol-cloud interactions (aerosol indirect effects) play an important role in regional meteorological variations, which could further induce feedback on regional air quality. While the impact of aerosol-cloud interactions on meteorology and climate has been extensively studied, their feedback on air quality remains unclear. Using a fully coupled meteorology-chemistry model, we find that increased aerosol loading due to anthropogenic activities in China substantially increases column cloud droplet number concentration and liquid water path (LWP), which further leads to a reduction in the downward shortwave radiation at surface, surface air temperature and planetary boundary layer (PBL) height. The shallower PBL and accelerated cloud chemistry due to larger LWP in turn enhance the concentrations of particulate matter with diameter less than 2.5 μm (PM2.5) by up to 33.2 μg m-3 (25.1%) and 11.0 μg m-3 (12.5%) in January and July, respectively. Such a positive feedback amplifies the changes in PM2.5 concentrations, indicating an additional air quality benefit under effective pollution control policies but a penalty for a region with a deterioration in PM2.5 pollution. Additionally, we show that the cloud processing of aerosols, including wet scavenging and cloud chemistry, could also have substantial effects on PM2.5 concentrations.
Project description:The COVID-19 pandemic has raised awareness about various environmental issues, including PM2.5 pollution. Here, PM2.5 pollution during the COVID-19 lockdown was traced and analyzed to clarify the sources and factors influencing PM2.5 in Guangzhou, with an emphasis on heavy pollution. The lockdown led to large reductions in industrial and traffic emissions, which significantly reduced PM2.5 concentrations in Guangzhou. Interestingly, the trend of PM2.5 concentrations was not consistent with traffic and industrial emissions, as minimum concentrations were observed in the fourth period (3/01-3/31, 22.45 μg/m3) of the lockdown. However, the concentrations of other gaseous pollutants, e.g., SO2, NO2 and CO, were correlated with industrial and traffic emissions, and the lowest values were noticed in the second period (1/24-2/03) of the lockdown. Meteorological correlation analysis revealed that the decreased PM2.5 concentrations during COVID-19 can be mainly attributed to decreased industrial and traffic emissions rather than meteorological conditions. When meteorological factors were included in the PM2.5 composition and backward trajectory analyses, we found that long-distance transportation and secondary pollution offset the reduction of primary emissions in the second and third stages of the pandemic. Notably, industrial PM2.5 emissions from western, southern and southeastern Guangzhou play an important role in the formation of heavy pollution events. Our results not only verify the importance of controlling traffic and industrial emissions, but also provide targets for further improvements in PM2.5 pollution.
Project description:PM2.5 chemical components play significant roles in the climate, air quality, and public health, and the roles vary due to their different physicochemical properties. Obtaining accurate and timely updated information on China's PM2.5 chemical composition is the basis for research and environmental management. Here, we developed a full-coverage near-real-time PM2.5 chemical composition data set at 10 km spatial resolution since 2000, combining the Weather Research and Forecasting-Community Multiscale Air Quality modeling system, ground observations, a machine learning algorithm, and multisource-fusion PM2.5 data. PM2.5 chemical components in our data set are in good agreement with the available observations (correlation coefficients range from 0.64 to 0.75 at a monthly scale from 2000 to 2020 and from 0.67 to 0.80 at a daily scale from 2013 to 2020; most normalized mean biases within ±20%). Our data set reveals the long-term trends in PM2.5 chemical composition in China, especially the rapid decreases after 2013 for sulfate, nitrate, ammonium, organic matter, and black carbon, at the rate of -9.0, -7.2, -8.1, -8.4, and -9.2% per year, respectively. The day-to-day variability is also well captured, including evolutions in spatial distribution and shares of PM2.5 components. As part of Tracking Air Pollution in China (http://tapdata.org.cn), this daily-updated data set provides large opportunities for health and climate research as well as policy-making in China.
Project description:Tangshan, a major industrial and agricultural center in northern China, frequently experiences significant PM2.5 pollution events during winter, impacting its large population. These pollution episodes are influenced by multi-scale meteorological processes, though the complex mechanisms remain not fully understood. This study integrates surface PM2.5 concentration data, ground-based and upper-air meteorological observations, and ERA5 reanalysis data from 2015 to 2019 to explore the interactions between local planetary boundary layer (PBL) structures and large-scale atmospheric processes driving PM2.5 pollution in Tangshan. The results indicate that seasonal variations in PM2.5 pollution levels are closely linked to changes in PBL thermal stability. During winter, day-to-day increases in PM2.5 concentrations are often tied to atmospheric warming above 1500 m, as enhanced thermal inversions and reduced PBL heights lead to pollutant accumulation. Regionally, this aloft warming is driven by a high-pressure system at 850 hPa over the southern North China Plain, accompanied by prevailing southwesterly winds. Additionally, southwesterly winds within the PBL can transport pollutants from the adjacent Beijing-Tianjin-Hebei region to Tangshan, worsening pollution. Simulations from the chemical transport model indicate that regional pollutant transport can contribute to approximately half of the near-surface PM2.5 concentration under the unfavorable synoptic conditions. These findings underscore the importance of multi-scale meteorology in predicting and mitigating severe wintertime PM2.5 pollution in Tangshan and surrounding regions.
Project description:Direct residential and transportation energy consumption (RTC) contributes significantly to ambient fine particulate matter with a diameter smaller than 2.5 μm (PM2.5) in China. During massive rural-urban migration, population and pollutant emissions from RTC have evolved in terms of magnitude and geographic distribution, which was thought to worsen PM2.5 levels in cities but has not been quantitatively addressed. We quantify the temporal trends and spatial patterns of migration to cities and evaluate their associated pollutant emissions from RTC and subsequent health impact from 1980 to 2030. We show that, despite increased urban RTC emissions due to migration, the net effect of migration in China has been a reduction of PM2.5 exposure, primarily because of an unequal distribution of RTC energy mixes between urban and rural areas. After migration, people have switched to cleaner fuel types, which considerably lessened regional emissions. Consequently, the national average PM2.5 exposure concentration in 2010 was reduced by 3.9 μg/m3 (90% confidence interval, 3.0 to 5.4 μg/m3) due to migration, corresponding to an annual reduction of 36,000 (19,000 to 47,000) premature deaths. This reduction was the result of an increase in deaths by 142,000 (78,000 to 181,000) due to migrants swarming into cities and decreases in deaths by 148,000 (76,000 to 194,000) and 29,000 (15,000 to 39,000) due to transitions to a cleaner energy mix and lower urban population densities, respectively. Locally, however, megacities such as Beijing and Shanghai experienced increases in PM2.5 exposure associated with migration because these cities received massive immigration, which has driven a large increase in local emissions.
Project description:To stop the spread of COVID-19 (2019 novel coronavirus), China placed lockdown on social activities across China since mid-January 2020. The government actions significantly affected emissions of atmospheric pollutants and unintentionally created a nationwide emission reduction scenario. In order to assess the impacts of COVID-19 on fine particular matter (PM2.5) levels, we developed a "conditional variational autoencoder" (CVAE) algorithm based on the deep learning to discern unsupervised PM2.5 anomalies in Chines cities during the COVID-19 epidemic. We show that the timeline of changes in number of cities with unsupervised PM2.5 anomalies is consistent with the timeline of WHO's response to COVID-19. Using unsupervised PM2.5 anomaly as a time node, we examine changes in PM2.5 before and after the time node to assess the response of PM2.5 to the COVID-19 lockdown. The rate of decrease of PM2.5 around the time node in northern China is 3.5 times faster than southern China, and decreasing PM2.5 levels in southern China is 3.5 times of that in northern China. Results were also compared with anomalous PM2.5 occurring in Chinese's Spring Festival from 2017 to 2019, PM2.5 anomalies during around Chinese New Year in 2020 differ significantly from 2017 to 2019. We demonstrate that this method could be used to detect the response of air quality to sudden changes in social activities.