Unknown

Dataset Information

0

Muramyl Dipeptide Administration Delays Alzheimer's Disease Physiopathology via NOD2 Receptors.


ABSTRACT: Alzheimer's disease (AD) is the most common form of dementia in the world. The prevalence is steadily increasing due to an aging population and the lack of effective treatments. However, modulation of innate immune cells is a new therapeutic avenue, which is quite effective at delaying disease onset and improving cognitive decline.

Methods

We studied the effect of the NOD2 receptor ligand muramyl dipeptide (MDP) on the modulation of the innate immune cells, namely patrolling monocytes and microglia. We administrated MDP once a week for 3 months in an APPswe/PS1 mouse model in both sexes. We started the treatment at 3 months before plaque formation and evaluated its effects at 6 months.

Results

We showed that the MDP injections delay cognitive decline in both sexes via different mechanisms and protect the blood brain barrier (BBB). In males, MDP triggers the sink effect from the BBB, leading to a diminution in the amyloid load in the brain. This phenomenon is underlined by the increased expression of phagocytosis markers such as TREM2, CD68, and LAMP2 and a higher expression of ABCB1 and LRP1 at the BBB level. The beneficial effect seems more restricted to the brain in females treated with MDP, where microglia surround amyloid plaques and prevent the spreading of amyloid peptides. This phenomenon is also associated with an increase in TREM2 expression. Interestingly, both treated groups showed an increase in Arg-1 expression compared to controls, suggesting that MDP modulates the inflammatory response.

Conclusion

These results indicate that stimulation of the NOD2 receptor in innate immune cells is a promising therapeutic avenue with potential different mechanisms between males and females.

SUBMITTER: Piec PA 

PROVIDER: S-EPMC9321587 | biostudies-literature | 2022 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Muramyl Dipeptide Administration Delays Alzheimer's Disease Physiopathology via NOD2 Receptors.

Piec Pierre-Alexandre PA   Pons Vincent V   Préfontaine Paul P   Rivest Serge S  

Cells 20220719 14


Alzheimer's disease (AD) is the most common form of dementia in the world. The prevalence is steadily increasing due to an aging population and the lack of effective treatments. However, modulation of innate immune cells is a new therapeutic avenue, which is quite effective at delaying disease onset and improving cognitive decline.<h4>Methods</h4>We studied the effect of the NOD2 receptor ligand muramyl dipeptide (MDP) on the modulation of the innate immune cells, namely patrolling monocytes and  ...[more]

Similar Datasets

| S-EPMC2931527 | biostudies-literature
| S-EPMC391079 | biostudies-literature
| S-EPMC2688450 | biostudies-literature
2009-02-10 | GSE6918 | GEO
| S-EPMC5820023 | biostudies-literature
| S-EPMC4722953 | biostudies-literature
| S-EPMC7376735 | biostudies-literature
| S-EPMC3348889 | biostudies-literature
| S-EPMC6899285 | biostudies-literature
2009-02-21 | E-GEOD-6918 | biostudies-arrayexpress