Unknown

Dataset Information

0

Accurate Computational Prediction of Core-Electron Binding Energies in Carbon-Based Materials: A Machine-Learning Model Combining Density-Functional Theory and GW.


ABSTRACT: We present a quantitatively accurate machine-learning (ML) model for the computational prediction of core-electron binding energies, from which X-ray photoelectron spectroscopy (XPS) spectra can be readily obtained. Our model combines density functional theory (DFT) with GW and uses kernel ridge regression for the ML predictions. We apply the new approach to disordered materials and small molecules containing carbon, hydrogen, and oxygen and obtain qualitative and quantitative agreement with experiment, resolving spectral features within 0.1 eV of reference experimental spectra. The method only requires the user to provide a structural model for the material under study to obtain an XPS prediction within seconds. Our new tool is freely available online through the XPS Prediction Server.

SUBMITTER: Golze D 

PROVIDER: S-EPMC9330771 | biostudies-literature | 2022 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Accurate Computational Prediction of Core-Electron Binding Energies in Carbon-Based Materials: A Machine-Learning Model Combining Density-Functional Theory and <i>GW</i>.

Golze Dorothea D   Hirvensalo Markus M   Hernández-León Patricia P   Aarva Anja A   Etula Jarkko J   Susi Toma T   Rinke Patrick P   Laurila Tomi T   Caro Miguel A MA  

Chemistry of materials : a publication of the American Chemical Society 20220713 14


We present a quantitatively accurate machine-learning (ML) model for the computational prediction of core-electron binding energies, from which X-ray photoelectron spectroscopy (XPS) spectra can be readily obtained. Our model combines density functional theory (DFT) with <i>GW</i> and uses kernel ridge regression for the ML predictions. We apply the new approach to disordered materials and small molecules containing carbon, hydrogen, and oxygen and obtain qualitative and quantitative agreement w  ...[more]

Similar Datasets

| S-EPMC9753589 | biostudies-literature
| S-EPMC10269324 | biostudies-literature
| S-EPMC7735733 | biostudies-literature
| S-EPMC10480222 | biostudies-literature
| S-EPMC9972216 | biostudies-literature
| S-EPMC9753590 | biostudies-literature
| S-EPMC8444336 | biostudies-literature
| S-EPMC11391582 | biostudies-literature
| S-EPMC8119442 | biostudies-literature
| S-EPMC6545553 | biostudies-literature