Ontology highlight
ABSTRACT: Background
Thyroid cancer (TC) is a rapidly increasing incidence of endocrine malignancies, occupying 3% of new cancer incidence, of which 10% has a heterogeneous prognosis. Ferroptosis is a form of cell death distinct from apoptosis, which involves antitumor drug-related research. Long noncoding RNAs (lncRNAs) could affect cancer prognosis by regulating the ferroptosis; thus, ferroptosis-associated lncRNAs are emerging as prospective biomarkers for cancer therapy and prognosis. However, the prognostic factors of ferroptosis-associated lncRNAs in this solid tumor and their mechanisms remain unknown.Methods
The TC lncRNA data were extracted from RNA sequencing files of The Cancer Genome Atlas (TCGA). Then, we performed a two-cluster analysis and grouped 502 patients with TC in a 7 : 3 ratio. Both the least absolute shrinkage and selection operator (LASSO) regression and Cox regression analysis were conducted to create and validate the ferroptosis-associated lncRNA prognostic model (Ferr-LPM). Based on the median Ferr-LPM-based risk score (LPM_score) of the training cohort, we categorized patients into high and low LPM_score groups, which were then subjected to prognostic correlation and difference analysis. We also created a nomogram and assessed its predictive ability. Furthermore, immune-related mechanisms were investigated by analyzing the tumor immune microenvironment (TIME) and applying algorithms such as CIBERSROT.Results
We built a highly accurate nomogram to promote the clinical applicability of Ferr-LPM. The area under the receiver operating characteristic curve (AUC-ROC) reached above 0.9. Survival analysis suggested that when the Ferr-LPM score was higher, the overall survival (OS) of patients within this group was shorter. Meanwhile, we found a strong association between Ferr-LPM and TIME. Interestingly, the LPM_score was inversely proportional to the tumor purity but positively related to immune checkpoint blockade (ICB) response.Conclusion
We constructed a novel ferroptosis-associated lncRNA nomogram that could highly predict the prognosis of TC patients. Ferroptosis-associated lncRNAs might possess potential functions in regulating TIME, and lncRNAs provide TC patients with new prognostic biomarkers and therapeutic targets.
SUBMITTER: Lin Y
PROVIDER: S-EPMC9338734 | biostudies-literature | 2022
REPOSITORIES: biostudies-literature
Lin Yongjian Y Gan Fu F He Xiaoyu X Deng Huachu H Li Yong Y
Journal of immunology research 20220720
<h4>Background</h4>Thyroid cancer (TC) is a rapidly increasing incidence of endocrine malignancies, occupying 3% of new cancer incidence, of which 10% has a heterogeneous prognosis. Ferroptosis is a form of cell death distinct from apoptosis, which involves antitumor drug-related research. Long noncoding RNAs (lncRNAs) could affect cancer prognosis by regulating the ferroptosis; thus, ferroptosis-associated lncRNAs are emerging as prospective biomarkers for cancer therapy and prognosis. However, ...[more]