Project description:Three lineages (BA.1, BA.2 and BA.3) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant of concern predominantly drove South Africa's fourth Coronavirus Disease 2019 (COVID-19) wave. We have now identified two new lineages, BA.4 and BA.5, responsible for a fifth wave of infections. The spike proteins of BA.4 and BA.5 are identical, and similar to BA.2 except for the addition of 69-70 deletion (present in the Alpha variant and the BA.1 lineage), L452R (present in the Delta variant), F486V and the wild-type amino acid at Q493. The two lineages differ only outside of the spike region. The 69-70 deletion in spike allows these lineages to be identified by the proxy marker of S-gene target failure, on the background of variants not possessing this feature. BA.4 and BA.5 have rapidly replaced BA.2, reaching more than 50% of sequenced cases in South Africa by the first week of April 2022. Using a multinomial logistic regression model, we estimated growth advantages for BA.4 and BA.5 of 0.08 (95% confidence interval (CI): 0.08-0.09) and 0.10 (95% CI: 0.09-0.11) per day, respectively, over BA.2 in South Africa. The continued discovery of genetically diverse Omicron lineages points to the hypothesis that a discrete reservoir, such as human chronic infections and/or animal hosts, is potentially contributing to further evolution and dispersal of the virus.
Project description:The Omicron variant of SARS-CoV-2 is the latest pandemic lineage causing COVID-19. Despite having a vaccination rate ≥85%, Ecuador recorded a high incidence of Omicron from December 2021 to March 2022. Since Omicron emerged, it has evolved into multiple sub-lineages with distinct prevalence in different regions. In this work, we use all Omicron sequences from Ecuador available at GISAID until March 2022 and the software Nextclade and Pangolin to identify which lineages circulate in this country. We detected 12 different sub-lineages (BA.1, BA.1.1, BA.1.1.1, BA.1.1.14, BA.1.1.2, BA.1.14, BA.1.15, BA.1.16, BA.1.17, BA.1.6, BA.2, BA.2.3), which have been reported in Africa, America, Europe, and Asia, suggesting multiple introduction events. Sub-lineages BA.1 and BA.1.1 were the most prevalent. Genomic surveillance must continue to evaluate the dynamics of current sub-lineages, the early introduction of new ones and vaccine efficacy against evolving SARS-CoV-2.
Project description:Recent reports of SARS-CoV-2 Omicron variant sub-lineages, BA.1, BA.1.1, and BA.2, have reignited concern over potential escape from vaccine- and infection-induced immunity. We examine the sensitivity of these sub-lineages and other major variants to neutralizing antibodies from mRNA-vaccinated and boosted individuals, as well as recovered COVID-19 patients, including those infected with Omicron. We find that all Omicron sub-lineages, especially BA.1 and BA.1.1, exhibit substantial immune escape that is largely overcome by mRNA vaccine booster doses. While Omicron BA.1.1 escapes almost completely from neutralization by early-pandemic COVID-19 patient sera and to a lesser extent from sera of Delta-infected patients, BA.1.1 is sensitive to Omicron-infected patient sera. Critically, all Omicron sub-lineages, including BA.2, are comparably neutralized by Omicron patient sera. These results highlight the importance of booster vaccine doses for protection against all Omicron variants and provide insight into the immunity from natural infection against Omicron sub-lineages.
Project description:The SARS-CoV-2 Omicron variant has evolved into four sub-lineages-BA.1, BA.1.1, BA.2, and BA.3-with BA.2 becoming dominant worldwide. We and others have reported antibody evasion of BA.1 and BA.2, but side-by-side comparisons of Omicron sub-lineages to vaccine-elicited or monoclonal antibody (mAb)-mediated neutralization are necessary. Using VSV-based pseudovirus, we report that sera from individuals vaccinated by two doses of an inactivated whole-virion vaccine shows weak to no neutralization activity, while homologous or heterologous boosters markedly improve neutralization titers against all Omicron sub-lineages. We also present neutralization profiles against a 20 mAb panel, including 10 authorized or approved, against the Omicron sub-lineages, along with mAb mapping against single or combinatorial spike mutations. Most mAbs lost neutralizing activity, while some demonstrate distinct neutralization patterns among Omicron sub-lineages, reflecting antigenic differences. Collectively, our results suggest the Omicron sub-lineages threaten the neutralization efficacy of current vaccines and antibody therapeutics, highlighting the importance of vaccine boosters.
Project description:The COVID-19 pandemic has lately been driven by Omicron. This work aimed to study the dynamics of SARS-CoV-2 Omicron lineages during the third and fourth waves of COVID-19 in Argentina. Molecular surveillance was performed on 3431 samples from Argentina, between EW44/2021 and EW31/2022. Sequencing, phylogenetic and phylodynamic analyses were performed. A differential dynamic between the Omicron waves was found. The third wave was associated with lineage BA.1, characterized by a high number of cases, very fast displacement of Delta, doubling times of 3.3 days and a low level of lineage diversity and clustering. In contrast, the fourth wave was longer but associated with a lower number of cases, initially caused by BA.2, and later by BA.4/BA.5, with doubling times of about 10 days. Several BA.2 and BA.4/BA.5 sublineages and introductions were detected, although very few clusters with a constrained geographical distribution were observed, suggesting limited transmission chains. The differential dynamic could be due to waning immunity and an increase in population gatherings in the BA.1 wave, and a boosted population (for vaccination or recent prior immunity for BA.1 infection) in the wave caused by BA2/BA.4/BA.5, which may have limited the establishment of the new lineages.
Project description:Expansion of the SARS-CoV-2 BA.4 and BA.5 Omicron subvariants in populations with prevalent immunity from prior infection and vaccination, and associated burden of severe COVID-19, has raised concerns about epidemiologic characteristics of these lineages including their association with immune escape or severe clinical outcomes. Here we show that BA.4/BA.5 cases in a large US healthcare system had at least 55% (95% confidence interval: 43-69%) higher adjusted odds of prior documented infection than time-matched BA.2 cases, as well as 15% (9-21%) and 38% (27-49%) higher adjusted odds of having received 3 and ≥4 COVID-19 vaccine doses, respectively. However, after adjusting for differences in epidemiologic characteristics among cases with each lineage, BA.4/BA.5 infection was not associated with differential risk of emergency department presentation, hospital admission, or intensive care unit admission following an initial outpatient diagnosis. This finding held in sensitivity analyses correcting for potential exposure misclassification resulting from unascertained prior infections. Our results demonstrate that the reduced severity associated with prior (BA.1 and BA.2) Omicron lineages, relative to the Delta variant, has persisted with BA.4/BA.5, despite the association of BA.4/BA.5 with increased risk of breakthrough infection among previously vaccinated or infected individuals.
Project description:Since the emergence of Omicron variant of SARS-CoV-2 in late 2021, a number of sub-lineages have arisen and circulated internationally. Little is known about the relative severity of Omicron sub-lineages BA.2.75, BA.4.6, and BQ.1. We undertook a case-control analysis to determine the clinical severity of these lineages relative to BA.5, using whole genome sequenced, PCR-confirmed infections, between 1 August 2022 and 27 November 2022, among those who presented to emergency care in England 14 days after and up to one day prior to the positive specimen. A total of 10,375 episodes were included in the analysis; of which, 5,207 (50.2%) were admitted to the hospital or died. Multivariable conditional regression analyses found no evidence of greater odds of hospital admission or death among those with BA.2.75 (odds ratio (OR) = 0.96, 95% confidence interval (CI): 0.84-1.09) and BA.4.6 (OR = 1.02, 95% CI: 0.88- 1.17) or BQ.1 (OR = 1.03, 95% CI: 0.94-1.13) compared to BA.5. Future lineages may not follow the same trend and there remains a need for continued surveillance of COVID-19 variants and their clinical outcomes to inform the public health response.