Project description:The influenza virus was instrumental in unravelling critical aspects of the antiviral T lymphocyte mediated immune response. A major finding was the demonstration that CD8 T lymphocytes recognize short viral peptides presented by class I molecules of the major histocompatibility complex. Studies of influenza specific T cells have also led to an understanding of their important role in recovery from influenza virus infection in humans.
Project description:BackgroundInappropriate antimicrobial use (AMU) is a global concern. Opinions of veterinarians regarding AMU and its role in the development of antimicrobial resistance (AMR) may influence their prescription practices. It is important to understand these opinions, prescription practices and their potential impact on the development of AMR in order to guide efforts to curb the problem. Therefore, the objective of this study was to investigate the antimicrobial prescription practices and opinions of veterinarians in Kentucky regarding AMU and AMR.MethodsThis cross-sectional study used a 30-question survey questionnaire administered to veterinarians who were members of the Kentucky Veterinary Medical Association. Survey responses from 101 participants were included in the study. Descriptive statistics were computed and associations between categorical variables assessed using Chi-square or Fisher's exact tests. Firth logistic models were used to investigate predictors of "Compliance with prescription policies" and "Cost of antimicrobial affects prescription decisions".ResultsAlmost all (93%) respondents indicated that improper AMU contributed to selection for AMR. A total of 52% of the respondents believed that antimicrobials were appropriately prescribed, while the remaining 48% believed that antimicrobials were inappropriately prescribed. Significant predictors of compliance with prescription policies were availability of prescription policy at the veterinary facility (Odds Ratio (OR) = 4.2; p<0.001) and over-prescription (OR = 0.35; p = 0.025). Similarly, significant predictors of cost of antimicrobials affecting prescription decisions were lack of post-graduate training (OR = 8.3; p = 0.008) and practice type, with large animal practices having significantly lower odds of the outcome (OR = 0.09; p = 0.004) than small animal practices.ConclusionMost veterinarians indicated that improper AMU contributed to selection for AMR. Since the odds of compliance with prescription policies were 4-times higher among veterinarians working at facilities that had prescription policies compared to those at facilities that didn't, more veterinary facilities should be encouraged to adopt prescription policies to help improve compliance and reduce AMR. Veterinarians would also benefit from continued professional education to help improve prescription practices, antimicrobial stewardship and curb AMR.
Project description:Human populations have been shaped by catastrophes that may have left long-lasting signatures in their genomes. One notable example is the second plague pandemic that entered Europe in ca. 1,347 CE and repeatedly returned for over 300 years, with typical village and town mortality estimated at 10%-40%.1 It is assumed that this high mortality affected the gene pools of these populations. First, local population crashes reduced genetic diversity. Second, a change in frequency is expected for sequence variants that may have affected survival or susceptibility to the etiologic agent (Yersinia pestis).2 Third, mass mortality might alter the local gene pools through its impact on subsequent migration patterns. We explored these factors using the Norwegian city of Trondheim as a model, by sequencing 54 genomes spanning three time periods: (1) prior to the plague striking Trondheim in 1,349 CE, (2) the 17th-19th century, and (3) the present. We find that the pandemic period shaped the gene pool by reducing long distance immigration, in particular from the British Isles, and inducing a bottleneck that reduced genetic diversity. Although we also observe an excess of large FST values at multiple loci in the genome, these are shaped by reference biases introduced by mapping our relatively low genome coverage degraded DNA to the reference genome. This implies that attempts to detect selection using ancient DNA (aDNA) datasets that vary by read length and depth of sequencing coverage may be particularly challenging until methods have been developed to account for the impact of differential reference bias on test statistics.
Project description:BackgroundReferring to the ongoing antimicrobial resistance crisis as a 'silent' pandemic has gained popularity, but there are mixed views on whether such a phrase should be used in public health communication. Some researchers have argued that using the term 'silent pandemic' may lower the perceived threat and hinder mobilization efforts to tackle the problem.ObjectivesI investigated the impact of the phrase 'silent pandemic' on perceived threat levels and mobilization intentions.MethodsIn three experiments (n = 1677), participants from the UK's general adult population were randomly allocated to either a 'pandemic' or 'silent pandemic' condition, where the different terms were embedded in statements (Experiment 1) or brief information materials (Experiments 2 and 3). The term 'silent pandemic' was also presented with a brief description of its intended meaning (Experiment 3). The participants expressed their perception of the threat and their mobilization intentions.ResultsIn Experiments 1 and 2, referring to the pandemic as silent did not significantly affect the perceived threat (Cohen's d = -0.06; Cohen's d = 0.08, respectively) or mobilization intentions (Cohen's d = -0.07; Cohen's d = 0.11, respectively). However, in Experiment 3, the term 'silent pandemic' decreased the perceived threat and mobilization intentions (Cohen's d = 0.27; Cohen's d = 0.35, respectively).ConclusionsDescribing the pandemic as 'silent' yielded no measurable effects on perceived threat and mobilization intentions but it showed depreciating effects when accompanied by its intended meaning. Taken together, it is advisable to avoid the term.
Project description:The impact of the coronavirus disease (COVID-19) pandemic on antimicrobial resistance (AMR) is a major concern. To compare the number of patients and isolation rate of antimicrobial-resistant bacteria before and after the beginning of the COVID-19 pandemic using the comprehensive national surveillance data. We utilized comprehensive surveillance data, collected in the Japan Nosocomial Infections Surveillance programme, which included a total of 16.7 million samples of 5.9 million tested patients from >1300 hospitals. We compared the number of patients and isolation rate of five bacteria between 2019 and 2020, including antimicrobial-susceptible and -resistant bacteria of Staphylococcus aureus, Streptococcus pneumoniae, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa. The number of patients and isolation rate of S. aureus and meticillin-resistant S. aureus decreased slightly; those of S. pneumoniae and penicillin-resistant S. pneumoniae decreased by 60%; and those of third-generation cephalosporin-resistant K. pneumoniae increased. The isolation rate of the remaining bacteria apparently increased, although the number of patients decreased. This was due to a substantial decrease in the total number of tested patients (the denominator of the isolation rate), which was larger than that of the number of patients (the numerator of the isolation rate). Consistent results were obtained when the same data were re-aggregated using the procedure of the World Health Organization Global Antimicrobial Resistance Surveillance System, demonstrating the general importance of this problem. Surveillance data during the COVID-19 pandemic must be carefully interpreted based on examination of the numerator, denominator and background factors that affect the denominator.
Project description:http://www.sanger.ac.uk/resources/downloads/bacteria/This data is part of a pre-publication release. For information on the proper use of pre-publication data shared by the Wellcome Trust Sanger Institute (including details of any publication moratoria), please see http://www.sanger.ac.uk/datasharing/
Project description:During COVID-19 pandemic, chemicals from excessive consumption of pharmaceuticals and disinfectants i.e., antibiotics, quaternary ammonium compounds (QACs), and trihalomethanes (THMs), flowed into the urban environment, imposing unprecedented selective pressure to antimicrobial resistance (AMR). To decipher the obscure character pandemic-related chemicals portrayed in altering environmental AMR, 40 environmental samples covering water and soil matrix from surroundings of Wuhan designated hospitals were collected on March 2020 and June 2020. Chemical concentrations and antibiotic resistance gene (ARG) profiles were revealed by ultra-high-performance liquid chromatography-tandem mass spectrometry and metagenomics. Selective pressure from pandemic-related chemicals ascended by 1.4-5.8 times in March 2020 and then declined to normal level of pre-pandemic period in June 2020. Correspondingly, the relative abundance of ARGs under increasing selective pressure was 20.1 times that under normal selective pressure. Moreover, effect from QACs and THMs in aggravating the prevalence of AMR was elaborated by null model, variation partition and co-occurrence network analyses. Pandemic-related chemicals, of which QACs and THMs respectively displayed close interaction with efflux pump genes and mobile genetic elements, contributed >50 % in shaping ARG profile. QACs bolstered the cross resistance effectuated by qacEΔ1 and cmeB to 3.0 times higher while THMs boosted horizon ARG transfer by 7.9 times for initiating microbial response to oxidative stress. Under ascending selective pressure, qepA encoding quinolone efflux pump and oxa-20 encoding β-lactamases were identified as priority ARGs with potential human health risk. Collectively, this research validated the synergistic effect of QACs and THMs in exacerbating environmental AMR, appealing for the rational usage of disinfectants and the attention for environmental microbes in one-health perspective.