Ontology highlight
ABSTRACT:
SUBMITTER: De Freitas VM
PROVIDER: S-EPMC9369854 | biostudies-literature | 2022 Aug
REPOSITORIES: biostudies-literature
De Freitas Victor Muniz VM Chiloff Daniela Mendes DM Bosso Giulia Gabriella GG Teixeira Janaina Oliveira Pires JOP Hernandes Isabele Cristina de Godói ICG Padilha Maira do Patrocínio MDP Moura Giovanna Corrêa GC De Andrade Luis Gustavo Modelli LGM Mancuso Frederico F Finamor Francisco Estivallet FE Serodio Aluísio Marçal de Barros AMB Arakaki Jaquelina Sonoe Ota JSO Sartori Marair Gracio Ferreira MGF Ferreira Paulo Roberto Abrão PRA Rangel Érika Bevilaqua ÉB
Journal of clinical medicine 20220805 15
A machine learning approach is a useful tool for risk-stratifying patients with respiratory symptoms during the COVID-19 pandemic, as it is still evolving. We aimed to verify the predictive capacity of a gradient boosting decision trees (XGboost) algorithm to select the most important predictors including clinical and demographic parameters in patients who sought medical support due to respiratory signs and symptoms (RAPID RISK COVID-19). A total of 7336 patients were enrolled in the study, incl ...[more]