Unknown

Dataset Information

0

Characterisation of NLRP3 pathway-related neuroinflammation in temporal lobe epilepsy.


ABSTRACT:

Objective

Inflammation of brain structures, in particular the hippocampal formation, can induce neuronal degeneration and be associated with increased excitability manifesting as propensity for repetitive seizures. An increase in the abundance of individual proinflammatory molecules including interleukin 1 beta has been observed in brain tissue samples of patients with pharmacoresistant temporal lobe epilepsy (TLE) and corresponding animal models. The NLRP3-inflammasome, a cytosolic protein complex, acts as a key regulator in proinflammatory innate immune signalling. Upon activation, it leads to the release of interleukin 1 beta and inflammation-mediated neurodegeneration. Transient brain insults, like status epilepticus (SE), can render hippocampi chronically hyperexcitable and induce segmental neurodegeneration. The underlying mechanisms are referred to as epileptogenesis. Here, we have tested the hypothesis that distinct NLRP3-dependent transcript and protein signalling dynamics are induced by SE and whether they differ between two classical SE models. We further correlated the association of NLRP3-related transcript abundance with convulsive activity in human TLE hippocampi of patients with and without associated neurodegenerative damage.

Methods

Hippocampal mRNA- and protein-expression of NLRP3 and associated signalling molecules were analysed longitudinally in pilocarpine- and kainic acid-induced SE TLE mouse models. Complementarily, we studied NLRP3 inflammasome-associated transcript patterns in epileptogenic hippocampi with different damage patterns of pharmacoresistant TLE patients that had undergone epilepsy surgery for seizure relief.

Results

Pilocarpine- and kainic acid-induced SE elicit distinct hippocampal Nlrp3-associated molecular signalling. Transcriptional activation of NLRP3 pathway elements is associated with seizure activity but independent of the particular neuronal damage phenotype in KA-induced and in human TLE hippocampi.

Significance

These data suggest highly dynamic inflammasome signalling in SE-induced TLE and highlight a vicious cycle associated with seizure activity. Our results provide promising perspectives for the inflammasome signalling pathway as a target for anti-epileptogenic and -convulsive therapeutic strategies. The latter may even applicable to a particularly broad spectrum of TLE patients with currently pharmacoresistant disease.

SUBMITTER: Pohlentz MS 

PROVIDER: S-EPMC9380933 | biostudies-literature | 2022

REPOSITORIES: biostudies-literature

altmetric image

Publications

Characterisation of NLRP3 pathway-related neuroinflammation in temporal lobe epilepsy.

Pohlentz Malin S MS   Müller Philipp P   Cases-Cunillera Silvia S   Opitz Thoralf T   Surges Rainer R   Hamed Motaz M   Vatter Hartmut H   Schoch Susanne S   Becker Albert J AJ   Pitsch Julika J  

PloS one 20220816 8


<h4>Objective</h4>Inflammation of brain structures, in particular the hippocampal formation, can induce neuronal degeneration and be associated with increased excitability manifesting as propensity for repetitive seizures. An increase in the abundance of individual proinflammatory molecules including interleukin 1 beta has been observed in brain tissue samples of patients with pharmacoresistant temporal lobe epilepsy (TLE) and corresponding animal models. The NLRP3-inflammasome, a cytosolic prot  ...[more]

Similar Datasets

| S-EPMC9659366 | biostudies-literature
2010-06-11 | E-GEOD-6773 | biostudies-arrayexpress
2007-01-23 | GSE6773 | GEO
2007-01-23 | E-GEOD-6771 | biostudies-arrayexpress
| S-EPMC10329806 | biostudies-literature
2007-01-23 | E-GEOD-6834 | biostudies-arrayexpress
2014-12-04 | E-GEOD-63808 | biostudies-arrayexpress
| S-EPMC7026152 | biostudies-literature
| S-EPMC10846515 | biostudies-literature
| PRJNA647483 | ENA