Project description:The role of long non-coding RNA (lncRNA) in the progression of Nasopharyngeal carcinoma (NPC) has not been fully elucidated. The study was designed to explore the functional role of NKILA, a newly identified lncRNA, in the progression of NPC. We performed a lncRNA expression profile microarray using four NPC and paired para-cancerous tissues. NKILA was identified as a potential functional lncRNA by this lncRNA expression profile. We used 107 paraffin-embedded NPC tissues with different TNM stages to detect the expression of NKILA and analyzed the survival data by Log-rank test and Cox regression. The role of NKILA and its underlying mechanisms in the progression of NPC were evaluated by a series of experiments in vitro and vivo by silencing or expressing NKILA. Compared with control tissues, NKILA expression was identified to be decreased in NPC tissues. Low NKILA expression was correlated with unfavorable clinicopathological features and predicted poor survival outcome in NPC patients. After adjusting for potential confounders, low expression of NKILA was confirmed to be an independent prognostic factor correlated with poor survival outcomes. Furthermore, we found that NKILA overexpression in high-metastatic-potential NPC cells repressed motile behavior and impaired the metastatic capacity in vitro and in vivo. In contrast, RNAi-mediated NKILA depletion increased the invasive motility of cells with lower metastatic potential. Further experiments demonstrated that NKILA regulated the metastasis of NPC through the NF-κB pathway. Taken together, NKILA plays vital roles in the pathogenesis of NPC. The unique histological characteristics of NPC indicate that local inflammation plays a vital role in carcinogenesis of nasopharyngeal carcinoma.
Project description:The long non-coding RNA (lncRNA) NKILA (nuclear transcription factor NF-κB interacting lncRNA) functions as a suppressor in human breast cancer and tongue cancer. However, the clinical significance and biological roles of NKILA in esophageal squamous cell carcinoma (ESCC) remain unknown. In this study, we showed that NKILA was downregulated in ESCC tissues and cancer cells compared with their normal counterparts. Low NKILA expression correlated with large tumor size and advanced TNM stage, and predicted poor overall and disease-free survival of ESCC patients. Further loss- and gain-of-function assays indicated that NKILA inhibited proliferation and migration of ESCC cells in vitro, suppressed tumor growth and lung metastasis in vivo. Mechanistically, NKILA could inhibit phosphorylation of IκBα, suppress p65 nuclear translocation and downregulate the expression of NF-κB target genes in ESCC cells. These results suggest NKILA could suppress malignant development of ESCC via abrogation of the NF-κB signaling and may potentially serve as a prognostic marker for ESCC.
Project description:NPC is a type of malignant tumor with a high risk of local invasion and early distant metastasis. Resistin is an inflammatory cytokine that is predominantly produced from the immunocytes in humans. Accumulating evidence has suggested a clinical association of circulating resistin with the risk of tumorigenesis and a relationship between blood resistin levels and the risk of cancer metastasis. In this study, we explored the blood levels and the role of resistin in NPC. High resistin levels in NPC patients were positively associated with lymph node metastasis, and resistin promoted the migration and invasion of NPC cells in vitro. These findings were also replicated in a mouse model of NPC tumor metastasis. We identified TLR4 as a functional receptor in mediating the pro-migratory effects of resistin in NPC cells. Furthermore, p38 MAPK and NF-κB were intracellular effectors that mediated resistin-induced EMT. Taken together, our results suggest that resistin promotes NPC metastasis by activating the TLR4/p38 MAPK/NF-κB signaling pathways.
Project description:The aim of the present study was to explore the functional mechanism of NF-Kappa B-interacting Long non-protein coding RNA (NKILA) in breast malignant phyllodes tumors (BMPTs). The expression and functional role of NKILA were investigated by performing qRT‒PCR, Transwell assays, and CCK‒8 assays in primary BMPT cells. A Kaplan‒Meier curve was used to assess overall survival (OS) and local recurrence-free survival (LRFS). The location and expression levels of NKILA and P65 were determined by fluorescence in situ hybridization (FISH) and immunofluorescence (IF), respectively. NKILA was downregulated in patients with BMPT, especially in patients with local recurrence. NKILA had an antitumor effect and promoted the chemosensitivity of cells to cisplatin by blocking P65 phosphorylation and nuclear translocation. In conclusion, NKILA may be a potential therapeutic target for BMPT, especially for BMPT patients with local recurrence.
Project description:The metastasis of hepatocellular carcinoma (HCC) is one of the major obstacles hindering its therapeutic efficacy, leading to low surgical resection rate, high mortality and poor prognosis. Accumulating evidence has shown that both long noncoding RNA (lncRNA) and NF-κB play vital roles in the regulation of cancer metastasis. However, the clinical significance and biological function of NKILA (NF-κB interacting lncRNA) and its interaction with NF-κB in HCC remain unknown. In this study, we demonstrated that NKILA was down-regulated in HCC tissues and cell lines, and decreased NKILA expression was significantly associated with larger tumor size and positive vascular invasion in HCC patients. NKILA reduction was an independent risk factor of HCC patients' poor prognosis, and the 5-year overall survival (OS) rates of patients with low and high NKILA expression were 15.6% and 60.0%, respectively. Moreover, NKILA inhibits migration and invasion of HCC cells both in vitro and in vivo. Mechanistically, NKILA prevents Slug/epithelial to mesenchymal transition (EMT) pathway via suppressing phosphorylation of IκBα, p65 nuclear translocation and NF-κB activation. In conclusion, these results indicate that NKILA might serve as an effective prognostic biomarker and a promising therapeutic target against HCC metastasis.
Project description:Purpose: Caffeic acid phenethyl ester (CAPE) is the main polyphenol extracted from honeybee propolis, which inhibits the growth of several kinds of tumor. This study aimed to assess the inhibitory effect of CAPE in nasopharyngeal carcinoma (NPC), evaluate the synergistic action of CAPE in radiotherapy sensitivity of NPC cell lines and further elucidate the possible molecular mechanism involved. Materials and methods: CCK-8 assay was used to analyze cell proliferation ability. Colony formation assay was used to evaluate the clonogenic ability and radio-sensitiveness of NPC cells by CAPE treatment. Wound-healing and transwell assay were used to assess the motility of cells. The expression of key molecules of the epithelial-mesenchymal transition (EMT) was determined by western blot analysis and changes in radiation sensitivity were measured by colony-formation assay. cDNA microarray analysis was used to determine differentially expressed genes with and without CAPE treatment, with Gene Ontology enrichment of gene function and KEGG pathways determined. Cell cycle and apoptosis were detected by flow cytometry and western blot analysis. Results: CAPE suppressed the viability of NPC cell lines time- and dose-dependently. It induced apoptosis in NPC cells along with decreased expression of Bcl-XL and increased cleavage of PARP and expression of Bax. G1 phase arrest was induced by CAPE with ower expression of CDK4, CDK6, Rb and p-Rb. The migratory and invasive ability of NPC cells was decreased by the EMT pathway. The irradiation sensitivity of NPC cells was enhanced with CAPE treatment. CAPE specifically inhibited nuclear factor κB (NF-κB) signaling pathway by suppressing p65 subunit translocation from cytoplasm to nucleus. CAPE treatment was synergistic with chemotherapy and radiotherapy. Conclusion: CAPE may inhibit the proliferation and metastasis of NPC cells but enhance radiosensitivity in NPC therapy by inhibiting the NF-κB pathway. CAPE could be a potential therapeutic compound for NPC therapy.
Project description:The prime issue derived from prostate cancer (PCa) is its high prevalence to metastasize to bone. MicroRNA-204-5p (miR-204-5p) has been reported to be involved in the development and metastasis in a variety of cancers. However, the clinical significance and biological functions of miR-204-5p in bone metastasis of PCa are still not reported yet. In this study, we find that miR-204-5p expression is reduced in PCa tissues and serum sample with bone metastasis compared with that in PCa tissues and serum sample without bone metastasis, which is associated with advanced clinicopathological characteristics and poor bone metastasis-free survival in PCa patients. Moreover, upregulation of miR-204-5p inhibits the migration and invasion of PCa cells in vitro, and importantly, upregulating miR-204-5p represses bone metastasis of PCa cells in vivo. Our results further demonstrated that miR-204-5p suppresses invasion, migration, and bone metastasis of PCa cells via inactivating nuclear factor κB (NF-κB) signaling by simultaneously targeting TRAF1, TAB3, and MAP3K3. In clinical PCa samples, miR-204-5p expression negatively correlates with TRAF1, TAB3, and MAP3K3 expression and NF-κB signaling activity. Therefore, our findings reveal a new mechanism underpinning the bone metastasis of PCa, as well as provide evidence that miR-204-5p might serve as a novel serum biomarker in bone metastasis of PCa. This study identifies a novel functional role of miR-204-5p in bone metastasis of prostate cancer and supports the potential clinical value of miR-204-5p as a serum biomarker in bone metastasis of PCa.
Project description:PurposeDeath-associated protein kinase 1 (DAPK1), a tumor suppressor, is a rate-limiting effector in an endoplasmic reticulum (ER) stress-dependent apoptotic pathway. Its expression is epigenetically suppressed in several tumors. A mechanistic basis for epigenetic/transcriptional repression of DAPK1 was investigated in certain forms of acute myeloid leukemia (AML) with poor prognosis, which lacked ER stress-induced apoptosis.Experimental designHeterogeneous primary AMLs were screened to identify a subgroup with Flt3ITD in which repression of DAPK1, among NF-κB-and c-Jun-responsive genes, was studied. RNA interference knockdown studies were carried out in an Flt3ITD(+) cell line, MV-4-11, to establish genetic epistasis in the pathway Flt3ITD-TAK1-DAPK1 repression, and chromatin immunoprecipitations were carried out to identify proximate effector proteins, including TAK1-activated p52NF-κB, at the DAPK1 locus.ResultsAMLs characterized by normal karyotype with Flt3ITD were found to have 10- to 100-fold lower DAPK1 transcripts normalized to the expression of c-Jun, a transcriptional activator of DAPK1, as compared with a heterogeneous cytogenetic category. In addition, Meis1, a c-Jun-responsive adverse AML prognostic gene signature was measured as control. These Flt3ITD(+) AMLs overexpress relB, a transcriptional repressor, which forms active heterodimers with p52NF-κB. Chromatin immunoprecipitation assays identified p52NF-κB binding to the DAPK1 promoter together with histone deacetylase 2 (HDAC2) and HDAC6 in the Flt3ITD(+) human AML cell line MV-4-11. Knockdown of p52NF-κB or its upstream regulator, NF-κB-inducing kinase (NIK), de-repressed DAPK1. DAPK1-repressed primary Flt3ITD(+) AMLs had selective nuclear activation of p52NF-κB.ConclusionsFlt3ITD promotes a noncanonical pathway via TAK1 and p52NF-κB to suppress DAPK1 in association with HDACs, which explains DAPK1 repression in Flt3ITD(+) AML.
Project description:BackgroundNumerous studies have shown that long non-coding RNAs (lncRNAs) play key roles during multiple cancer processes, such as cell proliferation, apoptosis, migration and invasion. The previous studies found that NKILA interacted with and suppressed the nuclear translocation of NF-KappaB, which influenced metastasis and prognosis in breast cancer. However the clinical significance and biological role of NKILA in non-small cell lung cancer (NSCLC) remains unknown.MethodsWe examined expression levels of NKILA in 106 pairs of NSCLC tissues and cell lines. The expression level of NKILA after TGF-β1 stimulation also was examined by qRT-PCR and validated by Chromatin immunoprecipitation (ChIP). Gain-of-function and loss-of-function assays were performed to examine the effect of NKILA on proliferation, migration and invasion of NSCLC cells. RNA immunoprecipitation (RIP), western blot and rescue experiments were carried out to reveal the interrelation between NKILA, NF-κB and EMT signal pathway.ResultsThe expression of NKILA was down-regulated in NSCLC cancer tissues compared with matched adjacent noncancerous tissues, and lower NKILA expression in tumor tissues were significantly correlated with lymph node metastasis and advanced TNM stage. We found that the expression of NKILA was mainly regulated by classical TGF-β signal pathway in NSCLC cells rather than NF-κB pathway reported in breast cancer. Gain and loss of function assays found that NKILA inhibited migration, invasion and viability of NSCLC cells. Mechanistic study showed that NKILA attenuated Snail expression via inhibiting the phosphorylation of IκBα and NF-κB activation, subsequently suppressed the expression of markers of epithelial-mesenchymal transition process.ConclusionsThe present study found that the expression of NKILA was downregulated in tumor tissues of NSCLC, which improved the metastasis of NSCLC patients. In vitro studies further clarified that the expression of NKILA was regulated through classical TGF-β signal pathway, which subsequently inhibited migration and invasion of NSCLC cells through interfering NF-κB/Snail signal pathway in NSCLC cells.
Project description:An emerging body of evidence has promoted the understanding of the role of microRNAs (miRNAs) in tumorigenesis and progression, but the mediating function of miRNAs in nasopharyngeal carcinoma (NPC) development remains poorly elucidated. In this study, miR-449b-3p was downregulated in NPC specimens (P < .001) and cells (P < .05). Cytological and animal experiments provided evidence that miR-449b-3p inhibited NPC metastasis in vitro and in vivo. Disintegrin and metalloproteinase 17 (ADAM17) was revealed as a direct target of miR-449b-3p. Rescue experiments suggested that the downregulation of ADAM17 in the miR-449b-3p knockdown cells partially reversed the inhibition of cell invasion and migration. Luciferase reporter assay, chromatin immunoprecipitation assay, and Western blot analysis showed that ADAM17 could suppress the promoter activity and expression of miR-449b-3p by inducing NF-κB transcriptional activity. In conclusion, our study provided new insights into the underlying mechanism of the invasion and metastasis of NPC. The novel miR-449b-3p/ADAM17/NF-κB feedback loop could be a target for the clinical treatment of NPC.